Mostrando entradas con la etiqueta transgénicos. Mostrar todas las entradas
Mostrando entradas con la etiqueta transgénicos. Mostrar todas las entradas

06 febrero 2009

Medicamento producido por una cabra transgénica

La noticia es breve pero importante: la FDA acaba de aprobar la producción industrial de un medicamento mediante un animal transgénico. Se trata de ATryn, que se obtiene de la leche de cabras cuyo ADN ha sido alterado para pruducir más cantidad de antitrombina, una proteína que inactiva varias enzimas responsables de la coagulación de la sangre. Para conseguir los animales transgénicos se introduce el ADN humano responsable de la producción de la proteína en una célula embrionaria de cabra que luego se desarrolla hasta su nacimiento en una madre caprina de "alquiler". Una vez adulta, su leche contendrá una cantidad importante de antitrombina recombinante humana que será extraída y purificada para su uso.

La compañía que llevará adelante el proceso se llama GTC Biotherapeutics y las primeras beneficiadas serán las personas afectadas por una deficiencia hereditaria que afecta a la producción de antitrombina y que suelen morir por trombosis.

30 mayo 2008

Mosquitos de diseño

A modo de segunda parte o ampliación del post Modificación genética contra el dengue.

En el post anterior, aunque no dí las siglas, comenté la técnica denominada ABC (Autocidal Biological Control) como opción ante la más clásica SIT (Sterile Insect Technique) a la hora de reducir o erradicar poblaciones de insectos (mosquitos en el ejemplo).

El ABC se basa en la existencia de GLC: gen letal condicional. Un GLC es un gen que provoca la muerte del portador sólo cuando se dan ciertas condiciones ambientales (temperatura, dieta...).

El primer gen letal condicional que no interfería negativamente en la reproducción fue el llamado notch, descubierto en la omnipresente y nunca bien ponderada mosca de la fruta (Drosophila melanogaster). Notch impide el desarrollo larvario de los individuos heterozigóticos a temperaturas bajas mientras que no interfiere a temperaturas ambientales normales o altas. Thomas A. Miller, de la Universidad de California, comenta que mezclando a partes iguales poblaciones notch homozigóticas con otras libres de notch consiguieron su extinción en sólo tres generaciones. Debe quedar claro que es necesario reintroducir las moscas modificadas en cada generación, no basta con una única suelta.

El genetista Luke Alphey mencionado en el post anterior descubrió el segundo GLC, llamado nipper, también en la mosca de la fruta. Este gen puede ser introducido funcionalmente en otras especies y provoca la muerte larvaria, como ya hemos comentado, a menos que la dieta incluya el antibiótico tetraciclina, ausente en condiciones naturales. El gen ha sido introducido en mosquitos para crear poblaciones de MGM (mosquitos genéticamente modificados) y se ha visto que su efecto es el mismo que en las moscas.

En el post anterior Anna hacía una pregunta pertinente ¿qué ocurre con el pequeño porcentaje de larvas de MGM que por alguna razón no mueren a pesar de la ausencia de tetraciclina?

No he encontrado la respuesta explicita a eso por lo que propongo la mía. Estos casos se deben a la no expresión del GLC y en realidad no pasa nada: estas larvas pasan a formar parte de la población normal y si llegan a adultas no habrá especial diferencia entre ellas y el resto. Cuando nuevos individuos transgénicos sean introducidos en la generación siguiente se cruzarán con ellos en el mismo porcentaje que la población normal y sus descendientes se verán igualmente afectados. Es decir, es como si en la primera introducción hubiéramos soltado un 96-97% de adultos transgénicos y un 3-4% de no transgénicos. El decaimiento poblacional no debe verse afectado significativamente por ese 3-4% de "fracasos".

Esto sería en el mejor de los casos para las larvas en cuestión porque es posible que ese gen acabe expresándose en otra generación posterior.

De todas formas, la propagación/penetración de los transgenes en las poblaciones de mosquito no se conoce bien y es necesaria mucha más investigación. Los modelos matemáticos predicen un éxito claro de la estrategia pero, hasta donde he visto, trabajan con la hipótesis de apareamientos al azar. Esto es probablemente falso en cierta medida y podría modificar la dinámica del proceso.

Hay más circunstancias potencialmente influyentes. Por ejemplo, es importante saber que los pesticidas funcionan eficazmente con altas densidades de insectos y muy poco eficazmente cuando estas disminuyen. En cambio, el ABC lo hace al revés: son muy eficaces con densidades bajas de poblaciones naturales, las más difíciles de combatir mediante venenos. Esta eficacia se potencia con la proporción de suelta de machos estériles, como mínimo un 2:1 respecto a los machos naturales, frecuentemente más. Lógicamente esta proporción es más fácil de aumentar cuanto menor sea la población natural.

La estrategia ABC es aún más prometedora según un estudio sobre dispersión de Aedes aegypti que concluye que estos mosquitos, muy ligados a las poblaciones humanas, apenas se mueven unas decenas de metros. Esta circunstancia reduciría la tasa de recambio desde otras poblaciones naturales y permitiría periodos libres de mosquitos más largos.

Por terminar: todo esto nos parece algo ajeno a los españoles debido a que estamos fuera de las zonas de riesgo. Pero las parajodas de la vida hacen que Aedes albopictus, aka mosquito tigre, se haya instalado ya en el Este de España (año 2004) y se esté extendiendo. A ver si nos vamos tomando en serio estas cosas aunque sólo sea por egoísmo.

27 mayo 2008

Modificación genética contra el dengue

La precaución ante las modificaciones genéticas de organismos es necesaria pero los beneficios de dichas alteraciones pueden ser enormes y no cabe descartarlas sin más (aunque tampoco aceptarlas sin más).

En algunas otras enfermedades, las modificaciones genéticas pueden ser vitales (literalmente hablando). El último ejemplo es el del combate contra el dengue, una enfermedad causada por virus transmitidos por mosquitos de la especie Aedes aegypti.

Aedes aegypti

El dengue es un ejemplo de enfermedad que no puede tratarse directamente por lo que es necesario combatirla de otras formas. Una alternativa utilizada desde hace tiempo es, si se conoce el vector trasmisor de la enfermedad, reducir o erradicar sus poblaciones. En el caso del dengue son los mosquitos por lo que la primera posibilidad es buscar y eliminar sus zonas de cría o usar mosquiteras impregnadas de insecticida.

Otra opción es una suerte de "guerra reproductiva" mediante la suelta de machos esterilizados por irradiación. Esta estrategia ha sido útil en casos como la crisis de California provocada por la "medfly" (Mediterranean fruit fly, mosca de la fruta Ceratitis capitata) una plaga devastadora que arrasó los frutales de la costa oeste de los EE.UU. en varias ocasiones, especialmente a finales de los 80 del siglo pasado. Con las moscas se dan dos circunstancias convenientes: las hembras sólo copulan una vez y los machos irradiados son tan competitivos que los no irradiados. De esta forma, soltando cientos de millones de machos estériles, la fecundidad de las poblaciones cae en picado porque muchas hembras pondrán huevos que no han sido fecundados.

Esta solución es adecuada pero con Aedes aegypti no funciona ya que los machos irradiados no son competitivos y los normales les ganan por goleada a la hora de aparearse. Había que buscar un método alternativo a la esterilización.

Uno de ellos se ha desarrollado en Oxitec, una empresa fundada por un genetista de la Universidad de Oxford llamado Luke Alphey. La técnica es modificar el ADN del insecto introduciendo un elemento (transposón) denominado LA513. Los insectos que portan LA513 son fértiles pero en el estado larvario tienen una necesidad ineludible y curiosa: necesitan comer tetraciclina. El mecanismo es bastante críptico para los que no estamos en estos temas y me resulta difícil explicarlo con claridad. A ver si algún especialista se anima a redactar un párrafo que se entienda basándose en este trabajo.

La idea es que en el laboratorio se les proporciona la tetraciclina en la dieta y se consiguen sin problemas generaciones sucesivas de millones de adultos fértiles. Sin embargo, si se deja de proporcionar tetraciclina sólo un 3-4% sobrevive a la etapa larvaria de la siguiente generación, mientras en los insectos normales lo harían un 86-88%. Tanto en el caso concreto del Aedes aegypti como en otros vectores similares, la idea es introducir en las poblaciones naturales mosquitos genéticamente modificados para provocar un decaimiento general de la población ya que no existe posibilidad de que su dieta contenga tetraciclina. Este mismo procedimiento está siendo estudiado para el control de la malaria, enfermedad que causa mucha mayor mortalidad que el dengue y cuya vacuna se resiste a aparecer.

La eficacia de esta estrategia en condiciones naturales aún no se ha probado. Hasta el momento sólo se tienen buenas perspectivas basadas en modelos matemáticos de la dinamica poblacional.

Las organizaciones ecologistas y mucha otra gente preocupada por el medio no suelen ver con buenos ojos este tipo de estrategias ya que sospechan de efectos imprevistos cuando las poblaciones modificadas sean liberadas en los ecosistemas tropicales. En este caso concreto parece haber pocos riesgos ya que el mosquito está "condenado" a morirse rápidamente y sus larvas también antes de llegar a adultos. Sin embargo, por motivos prácticos sería conveniente que los primeros ensayos se hicieran en islas donde pudiera hacerse un seguimiento más preciso de la dinámica de las poblaciones locales.

En el otro plato de la balanza están los estimados 50 millones de casos anuales en el mundo, incluyendo unos 400000 de dengue hemorrágico, una variante más grave. De cualquier modo, la "guerra reproductiva" de alta tecnología debería estar siempre ligada a medidas más simples: la mejora de las condiciones de higiene y a medidas preventivas que sólo pueden implantarse erradicando la pobreza extrema y el hacinamiento.

Entrada relacionada sobre mosquitos resistentes al plasmodio de la malaria.

03 abril 2007

¿Transgénicos no? ¿O depende?

La malaria mata al menos 1 millón de personas cada año, la mayoría niños. ¿Por qué se resiste tanto esta enfermedad a una vacuna o un tratamiento eficaz?
El motivo es que la malaria no la provoca una bacteria sino un protozoo, en concreto cuatro especies del género Plasmodium. Los Plasmodium son parásitos de vertebrados pero para cerrar su complejo ciclo de vida necesitan pasar también por mosquitos del género Anopheles (sólo hembras) que actúan como vector de la enfermedad infectándose al picar a los enfermos e inoculando el parásito con sus picaduras a los sanos.
La magnitud del problema puede estimarse sabiendo que en zonas tropicales donde los mosquitos son comunes una persona desprotegida puede recibir cientos de picaduras en una noche.
Los protozoos no pueden combatirse mediante antibióticos convencionales y los tratamientos existentes suelen ser tóxicos por la similitud entre su estructura celular y la nuestra. La enfermedad de Chagas (15-20 millones de personas afectadas), la leishmaniosis (12 millones), la enfermedad del sueño o tripanosomiasis... son ejemplos actuales de graves enfermedades causadas por protozoos.
En el caso de la malaria se pueden utilizar métodos preventivos como usar mosquiteras impregnadas de insecticida a la hora de dormir. A este respecto se está debatiendo la conveniencia de volver a usar DDT, prohibido en los años 70, como impregnante de las mosquiteras y para el rociado de las casas no sólo por su bajo coste sino por su alta persistencia. Aún así, apenas el 2% de la población bajo riesgo en África usa mosquiteras, tanto por motivos económicos como de costumbres.
La segunda vía sería conseguir una vacuna, buscada desde hace bastantes años, pero cuyos resultados aún no son concluyentes. Como el tema es complejo sólo mencionaré dos casos que nos caen próximos. El primero es el de Pedro Alonso, español en el Hospital Clínico de Barcelona, cuyo equipo consiguió en un primer ensayo en Mozambique reducciones globales del 31% y de hasta el 48% para la malaria severa (aunque me han llamado la atención los grandes intervalos de confianza, del 12.3 al 71.0 en este último caso, ver resumen aqui). También es pertinente recordar al pionero en esta tarea, Manuel Elkin Patarroyo, científico colombiano, creador de una primera vacuna cuyos ensayos han tenido resultados muy controvertidos que no han desembocado por el momento en nada definitivo.
Pero hay un tercer camino que es actuar directamente sobre el vector.
Como introducción a esta estrategia, recordemos se pudo erradicar la enfermedad del sueño de la isla de Zanzíbar en los años 90 mediante la suelta de millones de moscas macho estériles. La esterilidad se consiguió irradiando las moscas y el método funcionó porque la mosca tse-tsé, Glossina, el vector en este caso, sólo copula una vez. Al soltar repetidamente millones de machos estériles la fecundidad de las poblaciones cae en picado y puede acabar en la extinción como ocurrió en Zanzíbar.
En el caso que tratamos hoy aqui el camino empezó con la publicación en el año 2000 de un artículo que abría una posibilidad nueva: manipular genéticamente los mosquitos para que sean ellos los inmunes al protozoo o, más exactamente, para que no pueda completar su ciclo de vida en el interior del insecto. Catteruccia y colegas desarrollaron métodos para hacer realidad la trasferencia de genes a los Anopheles algo que aún no había sido conseguido (aunque sí a en la famosa mosca de la fruta Drosophila melanogaster, a quien tanto debemos). Un poco más tarde, en el 2002, Ito y col. "crearon" los mosquitos transgénicos y encontraron que todo parecía funcionar bien en el laboratorio: eran más resistentes al plasmodio y en caso de infección, la cantidad de parásitos en su saliva era mucho menor.
Desde entonces han pasado muchas cosas, desde la secuenciación completa del genoma del Anopheles gambiae (un trabajo con un centenar de firmantes) hasta el descubrimiento de poblaciones de mosquitos que han desarrollado resistencia al plasmodio de forma natural.
El último episodio es reciente y ha sido ya contado en algunos blogs pero creo que merece la pena amplificar el eco porque Mauro Marrelli y colegas han conseguido un mosquito transgénico que además parece más competitivo que el resto. Es decir: en una mezcla de ambos tipos de mosquitos, gracias a una mayor fecundidad y a una vida más larga, los transgénicos van desplazando a los otros hasta ser mayoritarios en la población. Este aspecto es esencial porque es necesario que en la naturaleza acaben erradicando o al menos reduciendo drásticamente al mosquito no resistente.
Pero no todo está hecho porque el experimento se realizó con ratones (Plasmodium berghei) y en el ambiente controlado del laboratorio por lo que aún hay que dar el salto a la malaria humana y a las complejas condiciones naturales. Por cierto, que los mosquitos transgénicos lucen unos bonitos ojos verdes porque, ya de paso, se les insertó otro gen que codifica una proteína fluorescente de ese color para que fuera fácil reconocerlos.
En estos momentos hay al menos media docena de grupos norteamericanos y europeos trabajando sobre mosquitos transgénicos abarcando entre otros al Aedes aegypti, que propaga el dengue y la fiebre amarilla (virus en ambos casos) y al Anopheles stephensi, responsable de la malaria en India.
Aunque hay personas que apoyan el ensayo inmediato de la técnica en condiciones reales supongo que tampoco faltarán detractores aunque no he localizado aún una oposición bien argumentada a la posible aplicación práctica. Por eso he traido este caso aquí, porque creo que puede ser un buen ejemplo donde la manipulación genética ofrece esperanzas para solucionar un enorme problema. La idea que se está gestando es hacer un proyecto piloto en un área aislada, barajándose como adecuada la isla de Santo Tomé, en el golfo de Guinea donde además ha aparecido malaria resistente a la cloroquina.
La pregunta que surge a partir de este ejemplo es evidente ¿debemos evitar los transgénicos sin matices?

Para leer más: Malaria Journal es una revista de acceso abierto.
Grab this Widget ~ Blogger Accessories
 
º