Mostrando entradas con la etiqueta vida artificial. Mostrar todas las entradas
Mostrando entradas con la etiqueta vida artificial. Mostrar todas las entradas

21 mayo 2010

¿Vida artificial? Claramente no

Craig Venter es como el rey Midas ya que todo lo que toca se convierte en oro. O al menos en espectáculo. El titular no puede ser más desafortunado: Creada vida artificial. Pues no, eso no es cierto.

Hay que recordar que hace dos años Venter y compañía saltaban (otra vez) a la fama mediática con  un artículo titulado Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome
En aquél momento ya se habló de vida artificial cuando en realidad se trataba de un logro tecnológico de ensamblado de un cromosoma a partir de sus componentes básicos. Lo comenté en el post
¿Cerca de crear vida artificial? donde, para variar, me mostré crítico con el tratamiento de la noticia.
Hoy hay que mostrarse de nuevo crítico (según escribo esto oigo en la radio "la célula creada en laboratorios químicos" porque la noticia es inexacta.

El artículo se titula Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome, es de acceso libre y no imposible de entender para los que no somos especialistas en nada. ¿De qué va todo esto? Intentaré explicarlo dentro mis limitaciones.

Fragmento de genoma de M. mycoides

Craig Venter tiene un proyecto (entre otros también muy rompedores) que consiste en llegar a construir un genoma que sea capaz de generar propiedades nuevas en una célula. Este paso es uno más en ese camino pero la meta parece aún lejana como comentaré al final. Les pongo el resumen original y traducido:
We report the design, synthesis and assembly of the 1.08-Mbp Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a Mycoplasma capricolum recipient cell to create new Mycoplasma mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including “watermark” sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication. 
Comunicamos el diseño, síntesis y ensamblaje del genoma de 1,08 Mbp de Mycoplasma mycoides JCVI-syn1.0 a partir de una secuencia genómica digitalizada y su transplante en el interior de una célula receptora de Mycoplasma capricolum para así crear nuevas células de Mycoplasma mycoides controladas exclusivamente por el cromosoma sintético. El único DNA en el interior de las células es la secuencia del DNA sintético diseñado, que incluye secuencias que actúan como una "marca de agua" y otras modificaciones diseñadas como deleciones, polimorfismos y mutaciones, adquiridas durante el proceso de construcción. Las nuevas células tienen las propiedades fenotípicas esperadas y son capaces de autorreplicarse continuadamente.
Les hago un resumen de lo que he entendido del artículo y comentarios que he leído en otros lugares:
  • Mycoplasma es un género de bacterias que contienen genomas mínimos, los más pequeños de los seres vivos autónomos (descarten virus y parásitos) que se conocen. Son por tanto, un buen sujeto de experimentación.
  • La célula de Mycoplasma mycoides contiene un único cromosoma circular de ADN formado por 1 millón de pares de bases, los componentes básicos del ADN.
  • Comienzan con una célula que está viva y tiene todos sus mecanismos celulares intactos.
  • Se le extrae el cromosoma y se le secuencia para "leer" la secuencia exacta de bases que forma ese cromosoma. 
  • Con esa secuencia almacenada en un ordenador, se pone la cocina a funcionar y se van ensamblando bases. Primero en trozos pequeños, de unos 1000 pares de bases (1 kpb). Luego estos se ensamblan para formar cadenas (109) de unos 10 kpb y con estos se vuelve a hacer lo mismo para lograr 11 trozos de 100 kbp. Finalmente, la unión de estos consigue formar un cromosoma igual químicamente al original.
  • No todos los pasos de ensamblaje se hacen in vitro , sólo los de los trozos más pequeños; el resto se ensamblan en el interior de células vivas (de levaduras en este caso mientras que en su trabajo del 2008 lo habían hecho tanto en bacterias, Escherichia, como en levaduras, Saccharomyces).
  • El nuevo cromosoma se implanta en una célula de otra especie: Mycoplasma capricolum, previamente desposeída del suyo. 
  • La "nueva" célula (maquinaria celular de Mycoplasma capricolum y cromosoma copia de Mycoplasma mycoides) funciona sin problemas y consigue dividirse y formar colonias de  Mycoplasma mycoides.
Lo cual sugiere que el cromosoma "sintético" es igual de funcional que el "natural", algo que no debería ser una sorpresa para nadie ya que se trata, al final, de una molécula donde no importa la vía de síntesis sino la corrección en la secuencia.
¿Dónde está el logro? Pues en haber depurado la técnica de ensamblaje de bases para conseguir el cromosoma completo. Eso es un logro enorme. Lo demás es muy atractivo pero, insisto, no sorprendente.
¿Ha conseguido el equipo de Venter algo que tenga remotamente que ver con una célula artificial? No. La maquinaria celular sigue siendo la "natural" ya que su complejidad está fuera de nuestro alcance tecnológico por el momento. ¿Han "creado" un genoma nuevo? No. El genoma es casi idéntico al natural, no tiene ningún gen diseñado ni aporta ninguna función nueva a la célula. Las diferencias son que han insertado un gen llamado lacZ para que las colonias tengan un elegante color azul y que han quitado 14 genes para eliminar la capacidad patógena del original.

¿Qué sería realmente "vida artificial"?
Desde luego no sería mezclar genomas de organismos diferentes para generar un cóctel genético, aunque este sea viable, ya que estaríamos solamente jugando al ensayo y error con piezas ya existentes. Algo más ajustado a la expresión sería, por ejemplo, crear una bacteria para degradar cierto tipo de hidrocarburos y luego morirse sin dejar rastro. Para ello deberíamos planificar qué nuevas rutas metabólicas serían necesarias (no existirían en la naturaleza), qué nuevas enzimas deberían ser sintetizadas (no existirían en la naturaleza) y cómo programar el reloj biológico que garantizara la desaparición de los organismos sin efectos secundarios en el ecosistema. Todo esto debería ser trascrito a código genético (en una especie de ingeniería inversa) y esos genes serían sintetizados a partir de los nucleótidos básicos junto con todos los necesarios para la funcionalidad de la célula. A partir de ahí tal vez sería posible hablar de "organismo de síntesis artificial" aunque seguramente sería necesario acudir a células ya existentes para aprovechar su complejidad, fruto, a fin de cuentas, de unos pocos miles de millones de años de evolución.
No tengo duda de que esa meta se alcanzará pero aún nos queda un poco lejos.

12 febrero 2008

¿Cerca de crear vida artificial?

Hace unas semanas fueron varios los titulares y reseñas en los diarios similares a esta:

Investigadores estadounidenses del Instituto Venter han creado el primer genoma sintético de una bacteria, penúltima etapa considerada crucial para la creación de un organismo vivo artificial, según un estudio publicado en el último número de la revista ‘Science’. Se trata de la mayor estructura de ADN -estructura base de la vida- jamás fabricada por el hombre.

Sin ser experto en genética (en nada, ahora que lo pienso) creo que merece la pena llamar la atención sobre algunos detalles (no técnicos, que a eso no llego) del trabajo que reducen un poco sus pretensiones de revolución científica. Luego, como sé que hay genetistas que se dejan caer de vez en cuando por aquí, que me corrijan en lo que haga falta.

Lo primero es dar la referencia correcta del trabajo:

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas, Mikkel A. Algire, Chuck Merryman, Lei Young, Vladimir N. Noskov, John I. Glass, J. Craig Venter, Clyde A. Hutchison, III, and Hamilton O. Smith

Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome

Science Express, 24 january 2008.

Es decir, Craig Venter, el biólogo más mediático después de Ana Obregón (no se pierdan esto: miren con precaución hacia la derecha de la página, bajo la O), aparece en todos los medios como protagonista cuando en realidad es el antepenúltimo autor de un total de 17, lugar que suele reservarse a los gestores que no intervienen directamente en la investigación. No es que esto tenga especial importancia pero muestra como se usan los nombres famosos como anzuelo. Es como si la noticia ganara espectacularidad sacando a Craig Venter en sustitución de un "desconocido" Daniel Gibson, primer firmante. Todos los investigadores son del J. Craig Venter Institute una institución creada en octubre de 2006 de la que Venter es presidente.

Un rápido repaso

Recordemos el ADN está formado por una larga cadena de nucleótidos cuya secuencia codifica instrucciones. Los nucleótidos tienen siempre la misma estructura: un grupo fostato y un azúcar (desoxirribosa) junto a una de las cuatro bases siguientes: adenina (A), timina (T), guanina (G) o citosina (C).

Las bases forman secuencias (por ejemplo, AATGCCTGGCA) que representan instrucciones para la célula: un gen es una secuencia de bases que contiene instrucciones para construir una proteína. La cantidad de bases necesarias para formar un gen es muy variable y en nuestra especie está entre unas mil y un millón. Se estima que en nuestro genoma existen unos 20000-25000 genes y un total de 3 mil millones de bases.

En nuestro caso, el ADN está dividido entre 23 pares de cromosomas, estructuras formadas por el propio ADN superenrollado sobre unas proteínas llamadas histonas. Aunque el dato sea tan rutinario que ya no nos sorprenda hay que destacar que cada una de nuestras células contiene nuestro genoma completo y que el ADN de una célula completamente desenrollado mediría más de 1 m.

La información contenida en el ADN es "leida" por un conjunto de enzimas llamadas ARN polimerasas que la transcriben a una molécula de estructura similar llamada ARN mensajero (mRNA en guiri). Finalmente, el "mensaje" transportado por el mRNA es utilizado por la maquinaria celular para ensamblar aminoácidos (los componentes básicos de las proteínas) en un orden preciso, construyendo así la proteína codificada en el gen original.

El trabajo de Gibson y colegas

¿Que han hecho Gibson y colegas? Según la mayoría de las noticias, "crear un cromosoma artificial". A lo cual se añaden subtítulos como "La posibilidad de crear una vida partiendo de elementos inertes está un paso más cerca".

Daría la impresión, visto lo que he comentado antes, de que han ensamblado nucleótidos hasta formar un cromosoma de nueva factura que contendría la información necesaria para que un nuevo ser vivo, antes inexistente, se formara siguiendo las instrucciones contenidas en ese ADN.

Bueno, pues no. Lo que ha hecho el equipo de Gibson es ensamblar, aparentemente sin errores, una secuencia de 582970 bases que es una réplica de parte del genoma de Mycoplasma genitalium. Esta pequeña bacteria contiene un único cromosoma circular que ostenta (o casi) el record de genoma mínimo entre los organismos autónomos (eliminando virus y parásitos obligados). La diferencia entre el genoma original y el generado es la eliminación de un gen concreto lo que evita la patogenicidad de la bacteria.

Los nucleótidos son de origen sintético, es decir, sintetizados por medios químicos externos a células vivas.

El proceso comenzó secuenciando el ADN de M. genitalium, para obtener la secuencia correcta de bases. A partir de aquí se sintetizaron 101 secuencias de 5000 a 7000 bases (5-7 kb). El logro mayor del trabajo fue conseguir la unión de estos fragmentos en otros progresivamente mayores: 24 kb, 72 kb y 144 kb (1/4 del genoma).

Los fragmentos unidos (recombinados) en ambiente extracelular (in vitro) pero clonados para aumentar su cantidad en el interior de la bacteria Escherichia coli. Fueron luego secuenciados y conservados sólo los que estaban "bien formados", con la secuencia correcta de acuerdo con el paso primero del proceso. El último paso, de ensamblaje de los fragmentos de 1/4 de genoma, tuvo que realizarse in vivo dentro del hongo Saccharomyces cerevisiae. Los clones completos fueron secuenciados y se localizaron con la secuencia correcta, sin errores.

La recombinación "in vitro" se mostró más inestable según crecían los fragmentos. El uso de Saccharomyces para la última etapa de recombinación (in vivo, por tanto) se hizo necesaria ante el fracaso de la técnicas previas.

En resumen

Se ha conseguido hacer una copia del genoma natural de Mycoplasma genitalium partiendo de nucleótidos sintéticos, no un genoma original. La copia se realiza por recombinación in vitro de fragmentos progresivamente más largos. Los fragmentos son clonados aprovechando la maquinaria celular de seres vivos. La última etapa tuvo que hacerse in vivo por la labilidad de los "cuartos" de genoma de 144 kb. La viabilidad del cromosoma "sintético" no ha podido demostrarse.

¿Qué sería realmente "vida artificial"?

Si no he cometido errores graves en la lectura del trabajo y en esta exposición (ruego tolerancia por parte de los especialistas, que yo hace mucho que no leo nada de genética), los logros del equipo de Gibson son importantes al haber logrado ensamblar un número muy elevado de bases pero tienen poco que ver con "vida artificial" u "organismos de síntesis".

¿Qué sería "vida artificial"? Desde luego no sería mezclar genomas de organismos diferentes para generar un cóctel genético, aunque este sea viable. Ahí estaríamos solamente jugando al ensayo y error con piezas ya existentes.

Algo más ajustado a la expresión sería, por ejemplo, crear una bacteria para degradar cierto tipo de hidrocarburos y luego morirse sin dejar rastro. Para ello deberíamos planificar qué nuevas rutas metabólicas serían necesarias (no existirían en la naturaleza), qué nuevas enzimas deberían ser sintetizadas (no existirían en la naturaleza) y cómo programar el reloj biológico que garantizara la desaparición de los organismos sin efectos secundarios en el ecosistema. Todo esto debería ser trascrito a código genético (en una especie de ingeniería inversa) y esos genes serían sintetizados a partir de los nucleótidos básicos junto con todos los necesarios para la funcionalidad de la célula. A partir de ahí tal vez sería posible hablar de "organismo de síntesis artificial" aunque seguramente sería necesario acudir a células ya existentes para aprovechar su complejidad, fruto, a fin de cuentas, de unos pocos miles de millones de años de evolución.

Sin duda que esa meta se alcanzará pero aún nos queda un poco lejos.

Grab this Widget ~ Blogger Accessories
 
º