30 septiembre 2009

Cambio global: intenciones y contradicciones

Aventuraba yo el otro día hablando del desarrollo y de la "sostenibilidad" que anunciar medidas a medio y largo plazo está bien pero no cuando, a) se usan como coartada para no poner en práctica otras medidas evidentes y de urgencia inmediata y/o b) en realidad no se piensa en llevarlas a la práctica cuando llegue el momento. M. A. Sabadell abundó en este asunto en su blog en Público hace unos meses.

La cosa venía a cuento de que, como ya les conté alguna vez, estamos finalizando un proyecto donde intentamos evaluar los potenciales efectos que algunos escenarios de cambio climático tendrían sobre la vegetación peninsular. No puedo aún darles detalles pero la cosa pinta de regular a mal. Y claro, en las reuniones ya se empieza a plantear la discusión: ¿qué se puede hacer para reducir ese posible daño?

La pregunta es un arma de doble filo: por un lado se reconoce la necesidad de hacer algo pero, por otra, se reconoce el fracaso de no haber hecho nada en el pasado. Por ese motivo, y aunque las discusiones tienen su interés, creo poco en las medidas que podemos recomendar tomar. La causa es mi impresión de que muchas medidas de protección del medio natural son esencialmente lo que dije antes: coartadas. Me explico con un ejemplo conocido: España firma en 1990 el compromiso de que en el año 2014 sus emisiones de CO2 no se incrementarían más allá del 15%. A 5 años de esa fecha nuestras emisiones ya han aumentado casi el triple. ¿Cuál es el motivo? Pues fácil: después de firmar no se ha hecho gran cosa para controlar esas emisiones. Eso sí, la firma se presentó como un éxito, un gran detalle de solidaridad mundial y de buen rollo ambiental. ¿Qué se va a hacer cuando llegue la fecha y se haga patente el flagrante incumplimiento? Con mis poderes paranormales predigo que se firmará otro acuerdo, tal vez más ambicioso (total, qué más da) pero con fecha del 2025 o 2050. Y con este pasará, muy probablemente, lo mismo que con el anterior.

Parece común en estos tiempos la sensación de que firmar un acuerdo es suficiente para conseguir la meta. O de que anunciar que algo se va a hacer es equivalente a haberlo hecho. Parece tan común como la desidia para tomar medidas inmediatas ante los daños reales que estamos, ahora, viendo crecer ante nuestros ojos.

En el caso de nuestro proyecto de vulnerabilidad de la vegetación nos encontramos con una paradoja (parajoda diría alguno) que afecta tanto a los bosques como a las especies singulares. Ambos grupos lo van a pasar mal y probablemente algunas especies desaparezcan definitivamente si se confirma alguno de los escenarios analizados. Pero su problema principal no es el cambio climático, nunca lo ha sido. Su problema viene de nuestra actuación pasada y actual. Varios bosques pueden verse reducidos drásticamente pero esto es una consecuencia sobrevenida sobre la realidad de que ya los tenemos en una situación crítica: fragmentados y limitados a unas extensiones ridículas respecto a su área potencial. Del mismo modo, muchas especies que actualmente están en las “listas rojas” o equivalentes, lo están debido como causa primaria a la reducción o degradación de su hábitat no porque hayan subido las temperaturas de febrero o bajado las lluvias de abril.

Temperatura media de las máximas anual en el periodo 1961-1990; los datos de las estaciones provienen de la AEMET, su tratamiento, organización y proceso posterior (interpolación y gradientes antitudinales) es nuestro.

Otro día me desahogo y les cuento algunas medidas obvias que hay que tomar, a ver si están de acuerdo conmigo. Mientras tanto les diré que la semana pasada estuve en La Casa Encendida en Madrid, reunido con otros "agentes" de la compleja cadena que analiza y propone cosas respecto al llamado "cambio global". Analiza y propone pero no dispone. Allá estábamos un par de universitarios, algunas organizaciones ecologistas, otras ONG no directamente ecologistas, sindicatos del campo, seguros, algún medio de comunicación y varios técnicos del Ministerio y de las Comunidades Autónomas. Por la mañana nos dedicamos en privado a hablar de los problemas y retos, también de las soluciones. Por la tarde hubo una mesa redonda pública en el auditorio.

Mis sensaciones son encontradas. Por un lado es necesario hacer estas reuniones, por otro nunca sale nada nuevo de ellas. Lo que sí me quedó claro fueron dos cosas, una buena y otra mala. La buena es que el personal técnico, funcionario o contratado, es generalmente estusiasta y se molesta en hacer bien su trabajo. La mala es que en el piso de arriba, los políticos de ir y venir cada cuatro años, no les hacen ni puñetero caso. Los tienen porque mola en estos tiempos pero no se creen nada ni están dispuestos a mojarse lo más mínimo. Finalmente, la repetición de ese patrón de exigencia y frustración tiene efectos demoledores en los técnicos. La muestra de ese divorcio, el más importante de toda la cadena de decisión, es que los políticos no están nunca en las discusiones, eso lo dejan a los técnicos que, lógicamente, no tienen responsabilidad en las decisiones finales, en la acción o la inacción.

Por lo tanto, las medidas que propondremos serán probablemente brindis al sol porque suponen decisiones serias y con efectos a medio y largo plazo. Para un político medio esto carece de interés: muchos no creen que haya que hacer nada (primera dificultad) pero aunque eso no se de, las decisiones son complicadas y van contra la corriente: mucha mejor gestión del suelo, mucha menos contaminación, mucho mejor control en la explotación del agua, muchos más medios contra los incendios, promoción real y decidida del transporte público... todo ello aderezado con honradez en la gestión urbanística, sensibilidad ambiental y mucho sentido común. Nada interesante a cuatro años vista.

Les dejo con un par de mapas, el de arriba y el de abajo. Tenemos muchos más, a cientos, resultado de modelizaciones donde trabajamos con tres modelos, dos escenarios (A2 y B2) y tres horizontes temporales. Como ya se han expueto en público creo que puedo ponerlos aquí para ir abriendo boca y contarles más adelante los detalles de la cuestión, lo que hemos hecho y lo bueno y lo malo del proyecto, que de todo hay, claro.

Temperatura media de las máximas anual prevista en el periodo 1971-2100 de acuerdo con el modelo CGCM2 y el escenario A2. La escala de colores es la misma que en la figura de arriba. La temperatura media se incrementa 4.6 ºC.

27 septiembre 2009

Donde dije digo, digo Diego: recortes en investigación

Hace pocos años, el gobierno nos hablaba con entusiasmo de que con ellos llegaría el fin del "retraso histórico" en la investigación en España, de sangrante fuga de cerebros, de la precariedad en la carrera investigadora. Al contrario, comenzaríamos a potenciar la búsqueda de la excelencia que nos llevaría a la única salida a la situacióin actual: el cambiar el modelo productivo sosteniéndolo sobre la investigación e innovación.
Hoy, con la volubilidad propia de la ausencia de convicciones, con la alegre algarabía de los inconscientes, nos dicen que todo ha cambiado. Todo aquello era sólo si la cosa económica iba bien, si no, hay otras prioridades. En el borrador de presupuestos para el año que viene se barajó inicialmente una reducción de los fondos para ciencia de un 37%, que luego dicen que redujo hasta un 18%. Todo filtraciones, ni confirmadas ni desmentidas por la que fue la "gran esperanza" venida de la empresa, la ministra Cristina Garmendia cuyas intervenciones son cualquier cosa menos claras (copio y pego de La Vanguardia.es):
Cristina Garmendia declaró ayer en Bruselas que "es una prioridad del Gobierno mantener la inversión en I+D+i", informa Europa Press. Garmendia dijo que "no se va a recortar ningún proyecto del Plan Nacional" de los que están en marcha –que ya tenían presupuesto asignado– y que "habrá nuevas convocatorias del plan nacional con presupuesto suficiente" –aunque no precisó cuántas convocatorias ni a cuánto asciende el concepto suficiente–.
El compromiso electoral de Zapatero de aumentar la inversión en I+D un 16% anual para acercarse a ese objetivo del 3% no se ha cumplido ni una sola vez en esta legislatura. Sí se cumplió en el 2008, aunque con presupuestos aprobados en la legislatura anterior. En el 2009 el aumento ya sólo fue del 2,5% –que una vez tenida en cuenta la inflación quedó en un crecimiento casi nulo–. Y en el 2010 se va a hacer "el máximo ejercicio de austeridad", reconoció el martes la ministra Cristina Garmendia.
La primera legislatura sí fue comprometida con el objetivo ya que entre 2005 y 2008 la inversión casi se duplicó. Pero todo eso debe ser un movimiento a medio y largo plazo, no "premios" unos años sí y otros no. Lamentablemente, la falta de consistencia de la política científica sólo genera desconcierto y desánimo, todo ello en contradicción con el objetivo aprobado en la UE en el año 2002, con España a favor, de aumentar la inversión en I+D hasta el 3% del PIB. La firma de este acuerdo, vendida en su momento como un éxito, era esencialmente humo, como se demuestra ahora. Nuestra inversión real no llegaba al 1.3% en el 2007 (últimas cifras disponibles) a pesar de las inversiones de los dos años anteriores ¿dónde quedará el año que viene?

Pero ¿no será que estamos pidiendo demasiado? Parece que no, como mostró hace ya unos días un artículo que aclaraba la magnitud del dinero afectado. Joan Guinovart, presidente de la Confederación de Sociedades Científicas de España, lo titulaba en El País: ¿Hundir la ciencia por el valor de seis Ronaldos? Y decía entre otras cosas:
La apuesta por la investigación y la innovación había sido, hasta ahora, uno de los mayores aciertos de la política del Gobierno [...] El presidente, una vez electo, cumplió su palabra y durante los años 2005 al 2008 la inversión casi se duplicó. Ello llevó la ciencia española a una etapa que fue calificada por la prestigiosa revista Nature como "la nueva edad de plata de España" [...]
La primera señal de que la nave zozobraba llegó con el presupuesto del 2009. La Confederación de Sociedades Científicas de España [...] detectó que la tendencia al alza se interrumpía y que para el presente año el crecimiento real era prácticamente nulo.
Datos no desmentidos oficialmente y confirmados confidencialmente hablan de un retroceso de más del 30% de la inversión en I+D prevista para el año próximo [...]
Todo ello, ¿qué reportaría a las arcas del Estado? El ahorro en el Plan Nacional, que es la savia que alimenta la investigación que se lleva a cabo en las universidades, los hospitales, el CSIC y otros organismos públicos de investigación, sería de unos 580 millones de euros. Me dirán que eso es mucho dinero. Yo les reto a que lo calculen en CRs (Cristianos Ronaldos, o el coste de fichar a un jugador galáctico). Efectivamente, se trata de seis CRs. ¿Vamos a dejar hundir el sistema público de I+D por lo que cuestan seis futbolistas? [...]
Presidente, recuerde sus promesas y su compromiso. Dijo que no nos fallaría. No lo haga. No ahora. No en este tema. No hipoteque su futuro y el de toda España por el precio de medio equipo de fútbol.
Finalmente, hace apenas dos días se hizo público el Manifiesto sobre la financiación de la ciencia en España, una solicitud firmada por media docena de cientificos de primera línea ayer mismo, es breve y simple:

El presidente y los ex presidentes de la Sociedad Española de Bioquímica y Biología Molecular, con ocasión del 32 Congreso Nacional de Bioquímica y Biología Molecular,

MANIFIESTAN:

  • Que deben mantenerse las dotaciones presupuestarias destinadas a la investigación científica básica y, en particular, al Plan Nacional y a los programas de investigación en red.
  • Que el Plan de Economía Sostenible del Gobierno no puede llevarse a efecto con éxito sin contar con una sólida base científica.
  • Que la inversión en I+D es esencial para consolidar, tanto en España, como en Europa, una economía basada en el conocimiento, según lo acordado en la cumbre europea de Lisboa del año 2000.
Firmantes: Miguel Ángel de la Rosa Acosta, Federico Mayor Zaragoza, Margarita Salas Falgueras, Carlos Gancedo Rodríguez, Joan J. Guinovart Cirera, Jesús Ávila de Grado, Vicente Rubio Zamora.

No se pide más que coherencia y un poco de visión de futuro, sólo eso. Pero esas virtudes nunca han sido frecuentes aquí, qué le vamos a hacer. Mientras tanto, el Consejo de Ministros aprobó ayer el borrador de presupuestos. Aún no hay análisis de lo destinado realmente a I+D.

Hay gente que apenas necesita una libreta y un lápiz para trabajar. A otros casi nos basta con un ordenador. Pero hay ramas de la ciencia que necesitan laboratorios, material, personal, trabajo de campo, continuidad, seguridad... No sólo equipamiento sino condiciones de entorno, laborales y una perspectiva razonable de futuro. Eso no parece que se entienda demasiado bien cuando el futuro termina en unas elecciones a cuatro años vista.

07 septiembre 2009

Impactos sobre la Tierra

Ya saben ustedes que la hipótesis más aceptada hoy sobre la extinción masiva ocurrida hace 65 millones de años, a finales del Cretácico, se atribuye al impacto de un meteorito en el actual Golfo de México. El cráter, llamado Chicxulub, no es actualmente visible aunque se detecta con claridad analizando las anomalías gravitatorias de la zona, como podemos ver en la figura inferior, donde la costa de Yucatán está representada por la línea blanca.


Anomalías gravimétricas en la zona del cráter de Chicxulub

La Tierra, como cualquier otro planeta o satélite, está expuesta al impacto de meteoritos aunque la mayoría no son detectados y casi todos son de un tamaño demasiado pequeños como para atravesar la atmósfera y dejar cráteres reconocibles. Sólo de vez en cuando el impacto se debe a objetos grandes, de decenas de metros o más, que dejan una huella visible en la superficie. Por suerte, la historia reciente no tiene registro de ninguno de tamaño excesivo pero sí quedan huellas de impactos pasados bastante grandes. Los que se han encontrado están recogidos en una base de datos específica: la Earth Impact Database, donde, entre otros, aparece el probablemente más conocido: el cráter Barringer de Arizona, de 1200 m de diámetro y apenas 50000 años de edad:

Cráter Barringer (foto de la Encyclopedia of Science)

¿La EID tiene catalogados 176 cráteres. Este es un número muy conservador ya que sólo se incluyen aquellas estructuras que han sido identificadas con suficiente seguridad. Aparte de las mencionadas, otras muchas habrán sido borradas por la erosión o son ilocalizables por la vegetación (los existentes están preferentemente en zonas áridas). Lógicamente, unos dos tercios de los meteoritos habrán caído sobre el mar sin dejar más huella que un tsunami pero fue hace tiempo y no estábamos para verlo.

El mayor cráter que se ha localizado no es el de los dinosaurios sino el llamado Vredefort que está en Sudáfrica y mide 300 km de diámetro. Eso sí, es viejo y queda poco de él ya que el impacto fue hace unos 2000 millones de años (Ma) nada menos. La mejor forma de verlo es mediante las medidas gravimétricas (ver imágenes aquí). Le sigue el de Sudbury, en Canadá, con 250 km y 1850 Ma y luego tenemos el ya mencionado de Chicxulub, con 170 km y mucho más reciente: 65 Ma. Hay 27 cráteres de más de 30 km de diámetro.

La base de datos nos muestra, además de los listados y datos específicos, mapas con la distribución por continentes. Abajo tienen el de Europa:

Mapa de Earth Impact Database

Al hilo de esta cuestión, acabo de leer el libro de Walter Álvarez sobre la secuencia de descubrimientos que llevó a la localización del cráter de Chicxulub ("Tyrannosaurus rex y el cráter de la muerte", Drakontos). Hablaré otro día de este libro, muy interesante, pero hoy comentaré solamente que una de las cuestiones básicas es el problema de la datación absoluta. En el caso de Chicxulub, tenía que comprobarse si el acontecimiento era coetáneo con el límite K/T (Cretácico-Terciario) pero ese era un caso académico solamente. Desde un enfoque más general, muchos nos planteamos la pregunta ¿cuál es la probabilidad de que un meteorito grande choque con la Tierra?

Para responder a esto hay dos vías de análisis. La más directa no nos da probabilidades genéricas sino alarmas concretas: se trata de detectar y seguir la trayecvtoria de los objetos potencialmente peligrosos para prever su posible acercamiento a la Tierra. Se hace a través del Near Earth Object Program que actualmente tiene catalogados 6292 objetos de los cuales unos 1062 tienen un diámetro estimado de 1 km o más y 145 se han etiquetado como "asteroides potencialmente peligrosos" (PHA, Potentially Hazardous Asteriods). Para ser un PHA, el asteroide debe cumplir dos condiciones: que su órbita se corte con la nuestra a menos de 0.05 UA (unos 7.500.000 km) y que mida 150 m de diámetro o más.

La otra vía es analizar la frecuencia y antigüedad de los impactos para así estimar un valor de probabilidad de impacto. Personalmente creo que este ejercicio no es demasiado interesante ya que los eventos son independientes e infrecuentes por lo que decir que puede esperarse un impacto cada, por ejemplo, 70 millones de años, no da apenas información: el próximo puede estar al caer o no suceder en los próximos mil millones de años: el error asociado a la media es enorme debido al pequeño tamaño de muestra y a la incertidumbre en las dataciones.

A este respecto, se ha publicado hace muy poco un artículo donde se cuestionan las dataciones absolutas de muchos de los cráteres mencionados en el catálogo. Se titula An appraisal of the ages of terrestrial impact structures y según sus autores sólo 25 cráteres han sido datados con una incertidumbre inferior al 2%, la mayoría mediante técnicas de radioisótopos (U/Pb y 40Ar/39Ar). Del resto, 86 ni siquiera pueden considerarse datados. El caso de Chicxulub es de los buenos aunque su edad propuesta imicialmente de 64.98±0.05 ha sido revisada corrigiendo un error sistemático hasta llevarla a 65.81±0.14 Ma. También se consideran sólidamente datados los mencionados Vredeforty y Sudbury.

Ya puestos, recordemos que la extinción masiva del fin del Cretácico no fue la más importante de la historia de la Tierra, puesto que le corresponde a la ocurrida hace 251 Ma (Pérmico-Triásico). Se ha propuesto un impacto como causa de esta extinción pero las evidencias son indirectas y el posible cráter no se ha identificado aunque diferentes equipos los sitúan tanto en los mares del Norte de Australia como en la Antártida.

Para terminar ¿qué nos dice el Near Earth Object Program sobre los riesgos inmediatos? Por el momento pueden estar ustedes traquilos porque no hay nada previsto en el próximo siglo. El riesgo de impacto se expresa sintéticamente en la llamada escala Torino que va de 0 a 10. Los valores 8, 9 y 10 se aplican a impactos seguros y el valor depende del daño causado. Al día de hoy sólo hay un objeto por encima de cero, el llamado 2007 VK184, de unos 130 m de diámetro. El máximo acercamiento se producirá en algún momento entre los años 2048 y 2057. La probabilidad de impacto es, por suerte, de sólo 0.00034. Y no, no hay nada para el 2012 ni nada se está acercando desde los confines del Sistema Solar, eso sólo está en la imaginación de algunos apocalípticos.

03 septiembre 2009

El Expediente X de Kerala

Kerala, Sur de India,
25 de julio de 2001, 8:45 a.m.

Comienza a llover. Nada infrecuente, es verdad, pero en este caso la lluvia es roja. Además, algunos dicen que se ha oído un trueno o algo similar un poco antes del fenómeno, que se repitió con frecuencia decreciente durante casi un par de meses más. La lluvia coloreada se debe normalmente al arrastre de partículas en suspensión en la atmósfera y, como mucho, aparece como una curiosidad en los diarios. Estas lluvias, sin embargo, atrajeron la curiosidad de algunos investigadores locales que intentaron publicar sus extraños resultados al cabo de un par de años. Con escaso éxito, todo hay que decirlo.

Los protagonistas de mayor tamaño de este asunto son Godfrey Louis y A. Santhosh Kumar, ambos doctores en física en la Universidad de Kerala. Los dos investigadores analizaron muestras de la lluvia roja y propusieron algunas cosas sorprendentes: el color rojo era debido a unas estructuras muy similares a células que eran muy probablemente de origen extraterrestre y habían sido traídas por un meteorito que se había disgregado en la atmósfera. De ser así, se trataría de la primera evidencia sólida de vida extraterrestre y consecuentemente del mayor descubrimiento científico de la historia.

Imagen de las células en suspensión en el agua de la lluvia roja (fuente)

Los dos primeros artículos de Louis y Kumar son de finales del año 2003 y nunca fueron publicados en revistas científicas aunque pueden encontrarse en arXiv.org. Sus títulos son Cometary panspermia explains the red rain of Kerala y New biology of red rain extremophiles prove cometary panspermia y en el primero se dice lo siguiente:

  • la lluvia contenía una enorme cantidad de células rojas de unos 5 micrómetros de diámetro
  • la explosión que se oyó al comenzar la lluvia puede provenir de la desintegración de un meteorito
  • lo cual apunta a que el origen de las células es extraterrestre y fueron transportadas por dicho meteorito
  • dichas células podrían ser esporas de un microorganismo extremófilo

Los autores consideran imposible que las "células" estuvieran previamente en la atmósfera y fueran arrastradas por la lluvia y modelizan una posible trayectoria cometaria que encajaría (más o menos) con las lluvias observadas. Sus argumentos no son concluyentes pero no deja de ser un comienzo prometedor. Luego se ponen a analizar las famosas células lo que debería ser bastante más interesante. Sin embargo, su análisis es visual y los resultados que presentan son de pruebas sin interés biológico alguno. Nada concluyente hasta el momento.

El segundo trabajo, de apenas dos meses después, es mucho más espectacular ya que los autores afirman:

  • que lo presente en la lluvia roja son esporas de microorganismos
  • que son microorganismos quimiosintéticos
  • que se desarrollan y se reproducen a 300 ºC en cualquier medio de cultivo
  • que se dividen mediante un proceso especial de fisión
  • que no tienen ADN
Según Louis y Kumar sus análisis con una prueba clara de que se trata de formas de vida diferentes de las presentes en la Tierra lo cual confirma la hipótesis de su origen extraterrestre. Ahora deberíamos preguntarnos ¿cómo es posible que estos resultados no se hayan publicado en Nature o Science y hayan quedado semiperdidos entre otros miles de artículos de arXiv?
La razón es simple: las pruebas no son lo suficientemente buenas. Por ejemplo, las que han hecho para el cultivo de los presuntos microorganismos no se atienen a ningún protocolo normal usado en microbiología y se detectan grandes lagunas en las explicaciones que, al final, dejan la sensacion de que no se ha verificado definitivamente nada de lo que se afirma.

Sin meternos en demasiados líos y dado que tienen ustedes los trabajos originales para hacer una consulta directa, diré que las dudas al respecto son muchas y serias. Por ejemplo, no se explica como se han recogido las muestras ni como se han conservado durante los años que duró la investigación. ¿Eran botellas estériles? ¿Poseen en el departamento de Física material y protocolos adecuados para la toma y conservación de muestras biológicas? ¿Hay garantía de que las muestras no estaban contaminadas? ¿Por qué no se contó con microbiólogos para las etapas de cultivo y pruebas biológicas? ¿Por qué no aparecen resultados de cultivos a temperaturas normales? ¿Cómo es que no se han hecho análisis con PCR que sí hu8nieran sido concluyentes?
Las dudas persisten dado que en su última publicación, ya en una revista científica, donde sintetizan los trabajos de 5 años, todo lo relativo a los cultivos, ciclos vitales, quimiosíntesis... ha desaparecido.
El artículo se publicó en Astrophysics and Space Science y se titula The red rain phenomenon and its possible extraterrestrial origin. Tienen una copia aquí.

¿Y qué dicen otros grupos que hayan analizado las muestras? Bueno, no parece que los autores hayan dado con facilidad muestras a grupos externos o tal vez no hayan tenido demanda, no sé. Aparte de artículos periodíscos, hay un informe de Thiruvananthapuram (India) que presenta resultados interesantes. Firmado por S. Sampath y colegas en el 2001 y titulado Colored Rain: A Report on the Phenomenon dice que las partículas en suspensión parecen esporas al microscopio óptico y que en el laboratorio de microbiología de Tropical Botanic Garden and Research Institute (TBGRI) se consiguió que germinaran en un medio de cultivo convencional y a temperatura ambiente. Lo que salió de ahí se identificó como una muy terrenal alga del género Trentepohlia. Esta alga es uno de los simbiontes de líquenes que son abundantes en esa zona de India por lo que los autores de este informe plantean que aunque el fenómeno es indudablemente extraño, la hipótesis de un origen local de las esporas es consecuente con los análisis. Tienen la foto del alga abajo:


Afirmaciones extraordinarias requieren pruebas extraordinarias o, al menos, sólidas. No es el caso. Incluso algunas de las explicaciones que Louis y Kumar presentan a favor de su hipótesis son poco convincentes. Por ejemplo, nadie vió o detectó el meteorito ni está verificado el supuesto "trueno" antes de la primera lluvia. Pero incluso aunque el meteorito fuera real no es lógico que las lluvias rojas duraran dos meses y sobre una zona tan limitada geográficamente sino que deberían haberse extendido sobre un área muchísimo más amplia.
Como conclusión: la panspermia sigue siendo una hipótesis sobre el origen de la vida sobre la Tierra. No es imposible ni absurda pero no hay la más mínima prueba de que haya ocurrido alguna vez y la lluvia de Kerala no ha aportado nada a favor de esa hipótesis. Otra vez será.
Grab this Widget ~ Blogger Accessories
 
º