Uso dos ordenadores portátiles, uno con Linux (Ubuntu) y otro con Windows XP. Me atrae el software libre, obviamente, y casi todo lo que tengo funcionando en ambos aparatos entra en esa categoría. Aún así, algunas aplicaciones pesadas o de cálculo intensivo son de pago y las ejecutamos remotamente en un servidor mediante escritorio remoto o similar. Y para hacer esto con más eficacia llevaba un tiempo buscando un sistema operativo ligero que nos devolviera a los tiempos de terminal contra mainframe. En Linux esto está razonablemente bien resuelto pero en Windows faltaban piezas.
Y hace dos o tres días me he enterado de una versión de Windows XP surgida el año pasado y pensada para funcionar sobre ordenadores viejos: Windows Fundamentals for Legacy PCs. Las necesidades no son muchas: 128 MB de RAM, un procesador Pentium, 1 Gb de disco y tarjeta de red y aunque dice que está pensado para funcionar en modo terminal parece que no es cierto, que funciona sin problemas de forma autónoma.
Podrán encontrar más información en la wikipedia o en la propia Microsoft. También he encontrado una zona de descarga vía bitTorrent en este enlace donde pueden obtener una imagen del CD de instalación (eso sí, paciencia: 575 Mb) ¿Clientes de bitTorrent? Yo estoy usando en estos momentos Ktorrent desde Ubuntu pero hay unos cuantos clientes libres para Windows como, por poner un ejemplo, Azureus. Para que WFLPC funcione es necesaria una clave pero leo que pueden usar la misma que la de su WXP normal. Como estoy en fase de descarga aún no me ha dado tiempo a probarlo, ya les contaré si resucito algún PC fósil.
30 enero 2007
[Breves] Un Windows ligero para el PC de la abuela
Etiquetas:
tecnología
Etiquetas, Bitacoras.com: tecnología
27 enero 2007
Infecciones benéficas
Donde no está de más que un hongo infectado te penetre en las células
Dichanthelium lanuginosum es una gramínea sin nada que llame la atención, una hierba más entre muchas. Pero Yellowstone nunca defrauda. Y nuestra protagonista de hoy crece en este Parque sobre suelos geotérmicos cuya temperatura supera los 50 ºC durante unos meses al año. Otras plantas en similares condiciones se marchitan y mueren sin resistirse demasiado. Pero esta no.
Hace unos años, una tal Regina S. Redman decidió examinar esta peculiar capacidad de superviviencia. Analizando la gramínea lo primero que encontraron fue un hongo endófito en las raíces, hojas, tallos y semillas de Dichantelium (¿se acuerdan de la babosa fotosintética?). El análisis del ADN mostró que era una especie de Curvularia que, además, se mostró incapaz de crecer o reproducirse independientemente de la planta a más de 40 ºC. La conclusión de esta etapa era que Curvularia vivía exclusivamente dentro de las células de Dichantelium y allí sí parecía poder reproducirse sin problemas.
La siguiente etapa de experimentos fue más interesante aún: se esterilizaron semillas de Dichantelium para generar plantas libres del hongo endófito. Luego se plantaron y, tras germinar, una parte fue inoculada artificialmente con el hongo y otra no. En los días posteriores se observó que ambos tipos de plantas no se diferenciaban demasiado en crecimiento ni desarrollo cuando se las mantenía a temperaturas moderadas. Luego, sus raíces fueron sometidas a temperaturas desde 50 a 65 ºC durante ciclos de varios días. A 50 ºC las plantas libres de hongos se marchitaban y sufrían clorosis (falta de clorofila). A 65 ºC todas murieron. Las plantas simbióticas sobrevivieron a ambas pruebas.
Al analizar las plantas supervivientes, se vió que el hongo estaba en todas ellas: ambos simbiontes habían sobrevivido al calor y, de alguna manera, se habían protegido mutuamente.
Aunque los mecanismos que permitían la mutua protección seguían siendo desconocidos parecía que el esquema general había sido descrito de forma más o menos completa. Pero no, la naturaleza es barroca y en este caso no se conformó con simples endosimbiosis.
Desde bastantes años antes se conocía la existencia de virus en los hongos. Los genomas de los virus fúngicos se caracterizan por una doble cadena de ARN que se denomina dsRNA y que no se presenta en los propios hongos. Por tanto, detectar su presencia es un buen indicador de infección vírica. Lo que sigue se lo pueden suponer: el hongo Curvularia, simbionte de Dichantelum, estaba siempre infectado por un virus. Lograron aislarlo y se vió que tomaba la forma de partículas esféricas de unos 27 nm de diámetro.
Los siguientes experimentos eran obvios y les comento directamente los resultados: las plantas simbiontes con hongos pero libres de virus no resistieron los ciclos de calor 65 ºC durante 10 horas diarias durante 2 semanas y cayeron tal como lo habían hecho las plantas libres de hongos. Los simbiontes planta-hongo-virus soportaron perfectamente que les cocieran las raíces.
Estamos ante un caso de triple simbiosis donde un virus que infecta un hongo que infecta una planta confiere protección ante el estrés térmico a todos los componentes del grupo siendo todos los simbiontes necesarios. He querido comentarlo para que se vea con claridad que la simbiosis entre organismos hace extraños compañeros y que la riqueza de relaciones entre organismos vivos y no tan vivos nos provee de sorprendentes ejemplos. Por cierto, el mecanismo por el cual todo esto funciona no se ha descubierto aún.
El virus ha sido bautizado como CThTV (Curvularia Thermal Tolerance Virus) y su ficha puede consultarse en esta página de ICTVdB - The Universal Virus Database. Sólo le falta un pase por Gran Hermano para hacerse famoso.
Un par de referencias:
Luis M. Márquez et al., 2006, DOI: 10.1126/science.1136237
Regina S. Redman et al., 2002, DOI: 10.1126/science.1072191
y si quieren ver un caso de virus-bacterias-insectos con protección ante parásitos:
Nancy A. Moran et al., 2005, DOI: 10.1073/pnas.0507029102
Etiquetas:
ciencia,
simbiosis,
Yellowstone
Etiquetas, Bitacoras.com: ciencia , simbiosis , Yellowstone
26 enero 2007
Vecinos invasores
Donde las invasiones no vienen del espacio sino de nuestra inconsciencia
1. Un petrolero descarga en un puerto del sur de Australia. Llena los tanques de agua de mar para usarla como lastre y vuelve a su origen, por ejemplo, el Mar del Norte. Allí vacía tanques y sentinas y con ello libera a miles de kilómetros de su área de distribución natural unos cuantos miles de millones de organismos, desde fitoplancton hasta posiblemente peces en diversos estados de desarrollo, pasando por docenas de grupos zoológicos poco favorecidos por la publicidad. Lo más habitual es que este trasiego ocasione la muerte inmediata de todos los viajeros forzosos pero ocasionalmente las condiciones ambientales del lugar de destino no son desfavorables.
2. Hablamos entonces de especies invasoras cuya entrada tiene efectos devastadores sobre los ecosistemas preexistentes. ¿O no? Las especies no tienen áreas de distribución fijas e inmutables en el tiempo sino que varían, avanzan sobre frentes de colonización, se reducen en otros sitios e incluso desaparecen. Las áreas de distribución se establecen en una suerte de equilibrios con otras especies, con las condiciones ambientales siempre cambiantes y con la capacidad de propagación: viabilidad, resistencia, dispersión.... Por ejemplo, parece que las hayas (Fagus sylvatica) entraron en la Península Ibérica hace unos pocos miles de años procedentes de Centroeuropa y aquí se extendieron sobre una buena parte del territorio. Pero no consideramos al haya una especie invasora sino autóctona. La pregunta pertinente es ¿qué diferencia las especies invasoras de las que han penetrado y se han extendido de forma natural sobre nuevos territorios?
3. La respuesta que propongo la comentábamos brevemente hace unos meses en otro blog. La "invasión" es un proceso que se diferencia de la colonización natural al menos en tres aspectos: el tiempo utilizado (breve), el mecanismo de colonización (inducido) y los sujetos implicados (especies aisladas).
Las especies tienen un área de distribución que varía en el tiempo pero la colonización de nuevas áreas o la desaparición de las antiguas será gradual pero no será protagonizada por una especie aislada sino por una comunidad más o menos surtida. El papel que esta comunidad desempeña es mantener una estabilidad que en el caso de las especies invasoras no se aplica. La escala temporal y la entrada brusca, no gradual, también son importantes porque en los movimientos naturales normalmente hay tiempo para reajustes graduales de los ecosistemas preexistentes. La consecuencia de la invasión es un desequilibrio en los ecosistemas invadidos que carecen de tiempo para adaptarse y aceptar al nuevo componente sin excesivos trumas. Este desequilibrio suele manifestarse por la desaparición de especies y por la reducción de la diversidad.
4. Dentro de este esquema general hay casos de todo tipo: especies introducidas que no ocasionan desequilibrios ni efectos negativos aparentes o especies cuya aparición tiene un efecto devastador sobre los ecosistemas anteriores. El impacto de una invasión depende de factores como la cantidad de individuos iniciales, su sensibilidad ante predadores, las condiciones ambientales, la existencia de competidores, la capacidad de reproducción y dispersión u otros menos evidentes como el grado de degradación del ecosistema invadido, que puede hacerlo más sensible. Como ejemplo de caso no traumático, los castaños (Castanea sativa) parecen ser una especie introducida en la Península Ibérica hace un par de miles de años que, sin embargo, se ha adaptado e integrado en bosques mixtos atlánticos sin efectos negativos.
5. Pero hay otros casos. El quagga era una especie de équido similar a la cebra (se dice que una subespecie) que fue aniquilado en su hábitat sudafricano a mediados del siglo XIX. Los quaggas se han reencarnado y, como decía la niña de Poltergeist, ya están aquí bajo la forma, en inglés, de quagga mussel, zebra mussel o, en español, de mejillón cebra (Dreissena polymorpha).
El mejillón cebra tiene su área de distribución natural en las cuencas de los mares Caspio y Negro. La navegación fluvial y tal vez otros mecanismos transportaron larvas de esta especie por buena parte de Europa de forma que, allá donde se encontraron cómodas, se establecieron. En estos nuevos hábitats el mejillón mostró una tasa de reproducción elevadísima, un hambre feroz y un espíritu competitivo digno de Bobby Fisher. Y encima no es comestible. Los Grandes Lagos norteamericanos fueron colonizados probablemente por la limpieza de tanques o vaciado de sentinas hace apenas 25 años. Desde entonces el mejillón cebra no ha dejado de extenderse alcanzando densidades increibles de decenas de miles de individuos por metro cuadrado. El resultado es devastador incluso para las infraestructuras humanas y no se ha encontrado solución alguna. En España han saltado las alarmas ante la expansión en algunos grandes ríos, como el Ebro. Han saltado embalses aguas arriba con lo que sólo se entiende por causas artificiales, en concreto por ser usado como cebo por pescadores poco conscientes del problema.
6. Y es que somos la especie invasora más peligrosa. No sólo somos prolíficos, destructores, voraces y resistentes sino que además adoptamos conductas de riesgo. La del petrolero es una de ellas pero hay otras más cercanas. Por ejemplo, pasen por unos grandes almacenes y echen un vistazo a las cajas de semillas para césped. Encontrarán sin gran dificultad que en la composición aparece un Paspalum paspaloides, más conocido como hierba del búfalo. En España esta gramínea se está extendiendo por todas partes cuando debería haberse quedado, por ejemplo, en las grandes praderas norteamericanas. O el Carpobrotus, una bonita crasulácea sudafricana que tapiza playas y acantilados en la costa cantábrica, eliminando de paso al resto de la flora y que se extiende desde los jardines que la consideran muy decorativa. O el amazónico camalote (Eichhornia crassipes) extendiéndose por el río Guadiana hasta cubrirlo de una espectacular alfombra verde.
7. Al final este asunto está lo que algunos han llamado la “ruleta rusa ecológica”, un juego donde importamos y exportamos especies sin demasiada preocupación por las posibles consecuencias. Los ecosistemas son resultados de milenios de un juego complejo de interacciones y son razonablemente sólidos y resistentes ante variaciones naturales pero no están preparados ante agresiones antrópicas, mucho más devastadoras. Los desequilibrios acaban siempre igual: pérdida de diversidad, extinción de especies, un mundo más pobre...
22 enero 2007
Becas selectas
Nos llegan unos dípticos donde el grupo X concede 50 becas para trabajar en la empresa. Las ofrece a estudiantes de Y (ingeniería técnica) o Z (ingeniería). Son 12 meses por un monto total de 900 euros (no al mes, en total).
Eso sí, con una aclaración para que luego no haya equívocos: "dicha cantidad será destinada al pago de matrícula (recibo) y libros".
Más adelante dicen (la letra cursiva sigue siendo mía) : "los beneficiarios de las ayudas están obligados a prestar un servicio mínimo de 4 horas semanales" en la empresa.
Y tras poner tus datos personales te piden que contestes a una pregunta: "¿estarías interesado en ampliar el número de horas de dedicación a las que te obliga la beca (4 horas semanales) y ampliarlas como trabajo en prácticas hasta media jornada?"
Y hay que contestar poniendo una crucecita: sí o no.
¿Será que pienso mal de todo o esta oferta me parece un poco rara?
Eso sí, con una aclaración para que luego no haya equívocos: "dicha cantidad será destinada al pago de matrícula (recibo) y libros".
Más adelante dicen (la letra cursiva sigue siendo mía) : "los beneficiarios de las ayudas están obligados a prestar un servicio mínimo de 4 horas semanales" en la empresa.
Y tras poner tus datos personales te piden que contestes a una pregunta: "¿estarías interesado en ampliar el número de horas de dedicación a las que te obliga la beca (4 horas semanales) y ampliarlas como trabajo en prácticas hasta media jornada?"
Y hay que contestar poniendo una crucecita: sí o no.
¿Será que pienso mal de todo o esta oferta me parece un poco rara?
Etiquetas:
cagüentodo
Etiquetas, Bitacoras.com: cagüentodo
21 enero 2007
Que no, que no trabaje con imágenes JPEG
Es sabido que la compresión de imágenes tiene las ventajas de reducir el tamaño de almacenamiento y, consecuentemente, las necesidades a la hora de trasmitir los datos: menos ancho de banda o, lo que es equivalente, más imágenes por unidad de tiempo.
Es menos conocido que los satélites de observación terrestre no toman todas las imágenes que podrían porque no hay tiempo para transmitirlas a las estaciones terrestres. El cuello de botella es, en este caso, el ancho de banda. Por este motivo y otros similares, los algoritmos de compresión se aplican desde las pequeñas imágenes que usamos en las páginas web (mejor 40 kb que 400 a la hora de visitar una página) hasta los Gb de las imágenes hiperespectrales. Por poner un ejemplo, una imagen tomada con una cámara digital de 5 megapíxeles se codifica en tres canales de 8 bits, uno por cada color primario en el modelo RGB. Eso hace un total de 24 bits/pixel lo que supone 15 Mbytes si guardamos la imagen sin comprimir. Como ninguna imagen contiene los más de 16 millones de colores que pueden codificarse con los 24 bits/píxel (y en cualquier caso no podríamos distinguirlos) una de las opciones más utilizadas para reducir el tamaño es usar un solo byte por pixel, cuyo valor representa un color determinado. La paleta de 256 colores se construye en función de las caracteristicas de cada imagen y el resultado suele ser visualmente indistinguible del original aunque realmente suponga una fuerte pérdida cromática. En las imágenes GIF se utiliza esta técnica y cada imagen se acompaña del diccionario de colores “a medida” para permitir la decodificación.
Pero la clave del proceso está en la palabra visualmente. En realidad la pérdida es importante y este procedimiento no es aceptable para todas las aplicaciones. Por ejemplo, en las imágenes destinadas a proceso numérico jamás debe perderse resolución radiométrica. El motivo es que los algoritmos que extraen información de estas imágenes sí “ven” las variaciones y los resultados se verán a su vez afectados.
Los algoritmos de compresión se suelen dividir en dos clases: sin pérdida y con pérdida. Los primeros garantizan que la imagen decodificada es idéntica a la inicial; en los segundos, en cambio, se acepta una distorsión en los valores originales para aumentar la tasa de compresión. Entre los primeros están las compresiones LZW, usadas en los formatos TIFF y GIF habitualmente. Entre los segundos el más conocido es el formato JPEG, que se basa en un sofisticado proceso de codificación que permite una compresión a demanda: más compresión con más pérdida o menos compresión con menor modificación de los valores originales.
Realmente, el algoritmo JPEG puede comprimir algunas imágenes con una eficacia aplastante sin que visualmente se note la diferencia. Pero todo tiene su precio y hay un efecto menos evidente que puede convencerles de no usar el formato JPEG ni siquiera para sus fotos de vacaciones. El problema es que si vamos a regrabar la misma imagen varias veces, por ejemplo, para varias sesiones de retoque, la distorsión se acumula en cada ciclo de descompresión-compresión sin que sea posible recuperar la calidad original. El número de ciclos necesarios para que la distorsión sea aparente dependerá de los parámetros que controla la calidad de la compresión: abajo les pongo un ejemplo para que vean el efecto.
En la imagen superior verán fuertes distorsiones cromáticas y de luminosidad, así como un efecto de bloques. Este se debe a que JPEG trabaja sobre bloques de 8x8 píxeles cuyos parámetros de compresión no tienen continuidad con los vecinos.
¿La solución? Huir de la compresión JPEG y usar el formato TIFF con 24 bits por píxel para guardar las imágenes. Ya estarán a tiempo de reducirlas para su blog o destrozarlas para otros objetivos pero al menos mantendrán un original en buen estado. Para más detalles pueden seguir el protocolo aconsejado por Paulo Porta que pueden encontrar aquí junto con otros artículos que desvelan aspectos básicos de la fotografía digital. Muy recomendable invertir un rato en leerlos todos.
Nota: dos programas para trabajar con imágenes. Para verlas y alguna manipulación simple, lo mejor que en encontrado es Irfanview, muy ligero y con operaciones útiles como, por ejemplo, la transformación masiva en "batch". Para edición en serio, el GIMP que además se distribuye con licencia GNU. Ambos gratuitos, claro.
Es menos conocido que los satélites de observación terrestre no toman todas las imágenes que podrían porque no hay tiempo para transmitirlas a las estaciones terrestres. El cuello de botella es, en este caso, el ancho de banda. Por este motivo y otros similares, los algoritmos de compresión se aplican desde las pequeñas imágenes que usamos en las páginas web (mejor 40 kb que 400 a la hora de visitar una página) hasta los Gb de las imágenes hiperespectrales. Por poner un ejemplo, una imagen tomada con una cámara digital de 5 megapíxeles se codifica en tres canales de 8 bits, uno por cada color primario en el modelo RGB. Eso hace un total de 24 bits/pixel lo que supone 15 Mbytes si guardamos la imagen sin comprimir. Como ninguna imagen contiene los más de 16 millones de colores que pueden codificarse con los 24 bits/píxel (y en cualquier caso no podríamos distinguirlos) una de las opciones más utilizadas para reducir el tamaño es usar un solo byte por pixel, cuyo valor representa un color determinado. La paleta de 256 colores se construye en función de las caracteristicas de cada imagen y el resultado suele ser visualmente indistinguible del original aunque realmente suponga una fuerte pérdida cromática. En las imágenes GIF se utiliza esta técnica y cada imagen se acompaña del diccionario de colores “a medida” para permitir la decodificación.
Pero la clave del proceso está en la palabra visualmente. En realidad la pérdida es importante y este procedimiento no es aceptable para todas las aplicaciones. Por ejemplo, en las imágenes destinadas a proceso numérico jamás debe perderse resolución radiométrica. El motivo es que los algoritmos que extraen información de estas imágenes sí “ven” las variaciones y los resultados se verán a su vez afectados.
Los algoritmos de compresión se suelen dividir en dos clases: sin pérdida y con pérdida. Los primeros garantizan que la imagen decodificada es idéntica a la inicial; en los segundos, en cambio, se acepta una distorsión en los valores originales para aumentar la tasa de compresión. Entre los primeros están las compresiones LZW, usadas en los formatos TIFF y GIF habitualmente. Entre los segundos el más conocido es el formato JPEG, que se basa en un sofisticado proceso de codificación que permite una compresión a demanda: más compresión con más pérdida o menos compresión con menor modificación de los valores originales.
Realmente, el algoritmo JPEG puede comprimir algunas imágenes con una eficacia aplastante sin que visualmente se note la diferencia. Pero todo tiene su precio y hay un efecto menos evidente que puede convencerles de no usar el formato JPEG ni siquiera para sus fotos de vacaciones. El problema es que si vamos a regrabar la misma imagen varias veces, por ejemplo, para varias sesiones de retoque, la distorsión se acumula en cada ciclo de descompresión-compresión sin que sea posible recuperar la calidad original. El número de ciclos necesarios para que la distorsión sea aparente dependerá de los parámetros que controla la calidad de la compresión: abajo les pongo un ejemplo para que vean el efecto.
El mismo fragmento tras 20 ciclos de grabación con compresión JPEG con calidad 40 (en una escala 0-100).
En la imagen superior verán fuertes distorsiones cromáticas y de luminosidad, así como un efecto de bloques. Este se debe a que JPEG trabaja sobre bloques de 8x8 píxeles cuyos parámetros de compresión no tienen continuidad con los vecinos.
¿La solución? Huir de la compresión JPEG y usar el formato TIFF con 24 bits por píxel para guardar las imágenes. Ya estarán a tiempo de reducirlas para su blog o destrozarlas para otros objetivos pero al menos mantendrán un original en buen estado. Para más detalles pueden seguir el protocolo aconsejado por Paulo Porta que pueden encontrar aquí junto con otros artículos que desvelan aspectos básicos de la fotografía digital. Muy recomendable invertir un rato en leerlos todos.
Nota: dos programas para trabajar con imágenes. Para verlas y alguna manipulación simple, lo mejor que en encontrado es Irfanview, muy ligero y con operaciones útiles como, por ejemplo, la transformación masiva en "batch". Para edición en serio, el GIMP que además se distribuye con licencia GNU. Ambos gratuitos, claro.
Etiquetas:
imagen digital,
JPEG,
tecnología
Etiquetas, Bitacoras.com: imagen digital , JPEG , tecnología
13 enero 2007
El extraño caso de la babosa que se movía por energía solar
Hablamos de los líquenes hace una temporada en una breve entrada titulada formas de vida. Tan breve que, aparte de la foto, sólo decía lo siguiente:
Estas “complicaciones” no son raras en la naturaleza, donde el concepto clásico de especie falla más que una escopeta de feria si queremos abarcar a la vida en su conjunto.
Un caso llamativo de estrategia para vivir es el de un grupito de moluscos que ha tomado afición a apropiarse de organismos externos para su propio provecho.
Elysia chlorotica es una especie de babosa marina que se alimenta de un alga llamada Vaucheria litorea. El alga es digerida en su totalidad con una notable excepción: los cloroplastos, orgánulos celulares capaces de realizar la fotosíntesis. Sorprendentemente, los cloroplastos del alga se incorporan a los tejidos del molusco en una forma llamada endosimbiosis intracelular. Los cloroplastos simbióticos son plenamente funcionales y generan nutrientes que son utilizados por la babosa. El resultado es que el molusco puede vivir mediante la fotosíntesis de sus adquiridos cloroplastos durante meses (siempre que haya luz, claro).
La endosimbiosis comienza en los moluscos juveniles, que no heredan los cloroplastos y nacen libres de ellos. Aún no se sabe gran cosa sobre como reconocen y seleccionan los cloroplastos del resto de componentes celulares del alga, ni como las células del animal los fagocitan para incorporarlos a su citoplasma.
Lo que sí está claro es que esta simbiosis es algo notable por varios motivos. El más llamativo es que el cloroplasto simbionte no es un organismo completo sino un orgánulo celular semiautónomo. Aunque posee su propio ADN y se divide independientemente de la célula en la que está inmerso, la necesita para el suministro de proteínas que no puede sintetizar por sí mismo. Esto significa que la célula del molusco debe disponer de los mecanismos adecuados para que los cloroplastos no mueran rápidamente: el éxito está claro ya que viven durante bastantes meses en el medio intracelular del molusco y sólo unos días en un medio extracelular. No se conoce con certeza cómo Elysia puede replicar las funciones presentes en el alga y generar las proteínas específicas necesarias para el mantenimiento de los cloroplastos pero hay una hipótesis que a mí me resulta enormemente atractiva: hay evidencia de que existe una transferencia génetica del alga a las células de los animales jóvenes antes de que la simbiosis se establezca. Si esto es así, podria explicarse la síntesis de proteínas necesarias para el cloroplasto porque la trasferencia lateral de genes permite a las células animales satisfacer las necesidades del cloroplasto. Si no es así habrá que buscar explicaciones alternativas para la excepcional pervivencia de estos orgánulos en un medio donde, en principio, no podrían mantener más que unos días.
Hay más ejemplos de esta extraordinaria habilidad. Por ejemplo, una babosa marina pariente de la anterior, Elysia timida también retiene cloroplastos pero de un alga diferente llamada Acetabularia acetabulum. Otra sólo se alimenta y usa cloroplastos de Caulerpa, otra de Halimeda. Todo un despliegue de adaptaciones con una base común y, flotando sobre todo el proceso, esa transferencia genética que hace pocos años sólo se reconocía en bacterias y que, poco a poco, parece no limitarse a ese caso.
Un par de referencias:
Mujer, C.V. et al., 1996, Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. PNAS, 93(22): 12333-12338
Rumpho, M.E. et al., 2000, Solar-Powered Sea Slugs. Mollusc/Algal Chloroplast Symbiosis. Plant Physiology, 123: 29-38.
Los líquenes no son plantas, son organismos simbióticos donde un alga y un hongo se unen para vivir complementándose mutuamente.A los líquenes se les asignan nombres específicos como si fueran organismos únicos en vez de comunidades simbióticas donde los papeles se reparten en beneficio mutuo: el alga fotosintetiza para ambos y el hongo la protege de la desecación. Una unión fructífera porque los líquenes aparecen en hábitats realmente extremos. El esquema basado en dos simbiontes es sólo el caso más simple porque a veces las especies implicadas forman tríos: en los líquenes del género Lobaria, al hongo y al alga se les asocia una cianobacteria que añade al grupo la capacidad de fijar el nitrógeno atmosférico. Tampoco son infrecuentes los organismos simbióticos formados por cuatro biontes y hay sospecha razonable de organismos formados por cinco.
Estas “complicaciones” no son raras en la naturaleza, donde el concepto clásico de especie falla más que una escopeta de feria si queremos abarcar a la vida en su conjunto.
Un caso llamativo de estrategia para vivir es el de un grupito de moluscos que ha tomado afición a apropiarse de organismos externos para su propio provecho.
Elysia chlorotica es una especie de babosa marina que se alimenta de un alga llamada Vaucheria litorea. El alga es digerida en su totalidad con una notable excepción: los cloroplastos, orgánulos celulares capaces de realizar la fotosíntesis. Sorprendentemente, los cloroplastos del alga se incorporan a los tejidos del molusco en una forma llamada endosimbiosis intracelular. Los cloroplastos simbióticos son plenamente funcionales y generan nutrientes que son utilizados por la babosa. El resultado es que el molusco puede vivir mediante la fotosíntesis de sus adquiridos cloroplastos durante meses (siempre que haya luz, claro).
Elysia chlorotica en un acuario. Los cloroplastos de dan un intenso color verde y permiten que ejerza una fotosíntesis "prestada" pero funcional.
La endosimbiosis comienza en los moluscos juveniles, que no heredan los cloroplastos y nacen libres de ellos. Aún no se sabe gran cosa sobre como reconocen y seleccionan los cloroplastos del resto de componentes celulares del alga, ni como las células del animal los fagocitan para incorporarlos a su citoplasma.
Lo que sí está claro es que esta simbiosis es algo notable por varios motivos. El más llamativo es que el cloroplasto simbionte no es un organismo completo sino un orgánulo celular semiautónomo. Aunque posee su propio ADN y se divide independientemente de la célula en la que está inmerso, la necesita para el suministro de proteínas que no puede sintetizar por sí mismo. Esto significa que la célula del molusco debe disponer de los mecanismos adecuados para que los cloroplastos no mueran rápidamente: el éxito está claro ya que viven durante bastantes meses en el medio intracelular del molusco y sólo unos días en un medio extracelular. No se conoce con certeza cómo Elysia puede replicar las funciones presentes en el alga y generar las proteínas específicas necesarias para el mantenimiento de los cloroplastos pero hay una hipótesis que a mí me resulta enormemente atractiva: hay evidencia de que existe una transferencia génetica del alga a las células de los animales jóvenes antes de que la simbiosis se establezca. Si esto es así, podria explicarse la síntesis de proteínas necesarias para el cloroplasto porque la trasferencia lateral de genes permite a las células animales satisfacer las necesidades del cloroplasto. Si no es así habrá que buscar explicaciones alternativas para la excepcional pervivencia de estos orgánulos en un medio donde, en principio, no podrían mantener más que unos días.
Hay más ejemplos de esta extraordinaria habilidad. Por ejemplo, una babosa marina pariente de la anterior, Elysia timida también retiene cloroplastos pero de un alga diferente llamada Acetabularia acetabulum. Otra sólo se alimenta y usa cloroplastos de Caulerpa, otra de Halimeda. Todo un despliegue de adaptaciones con una base común y, flotando sobre todo el proceso, esa transferencia genética que hace pocos años sólo se reconocía en bacterias y que, poco a poco, parece no limitarse a ese caso.
Un par de referencias:
Mujer, C.V. et al., 1996, Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. PNAS, 93(22): 12333-12338
Rumpho, M.E. et al., 2000, Solar-Powered Sea Slugs. Mollusc/Algal Chloroplast Symbiosis. Plant Physiology, 123: 29-38.
Suscribirse a:
Entradas (Atom)
Grab this Widget ~ Blogger Accessories