Mostrando entradas con la etiqueta simbiosis. Mostrar todas las entradas
Mostrando entradas con la etiqueta simbiosis. Mostrar todas las entradas

27 enero 2007

Infecciones benéficas

Donde no está de más que un hongo infectado te penetre en las células

Dichanthelium lanuginosum
es una gramínea sin nada que llame la atención, una hierba más entre muchas. Pero Yellowstone nunca defrauda. Y nuestra protagonista de hoy crece en este Parque sobre suelos geotérmicos cuya temperatura supera los 50 ºC durante unos meses al año. Otras plantas en similares condiciones se marchitan y mueren sin resistirse demasiado. Pero esta no.
Hace unos años, una tal Regina S. Redman decidió examinar esta peculiar capacidad de superviviencia. Analizando la gramínea lo primero que encontraron fue un hongo endófito en las raíces, hojas, tallos y semillas de Dichantelium (¿se acuerdan de la babosa fotosintética?). El análisis del ADN mostró que era una especie de Curvularia que, además, se mostró incapaz de crecer o reproducirse independientemente de la planta a más de 40 ºC. La conclusión de esta etapa era que Curvularia vivía exclusivamente dentro de las células de Dichantelium y allí sí parecía poder reproducirse sin problemas.

La siguiente etapa de experimentos fue más interesante aún: se esterilizaron semillas de Dichantelium para generar plantas libres del hongo endófito. Luego se plantaron y, tras germinar, una parte fue inoculada artificialmente con el hongo y otra no. En los días posteriores se observó que ambos tipos de plantas no se diferenciaban demasiado en crecimiento ni desarrollo cuando se las mantenía a temperaturas moderadas. Luego, sus raíces fueron sometidas a temperaturas desde 50 a 65 ºC durante ciclos de varios días. A 50 ºC las plantas libres de hongos se marchitaban y sufrían clorosis (falta de clorofila). A 65 ºC todas murieron. Las plantas simbióticas sobrevivieron a ambas pruebas.
Al analizar las plantas supervivientes, se vió que el hongo estaba en todas ellas: ambos simbiontes habían sobrevivido al calor y, de alguna manera, se habían protegido mutuamente.
Aunque los mecanismos que permitían la mutua protección seguían siendo desconocidos parecía que el esquema general había sido descrito de forma más o menos completa. Pero no, la naturaleza es barroca y en este caso no se conformó con simples endosimbiosis.

Desde bastantes años antes se conocía la existencia de virus en los hongos. Los genomas de los virus fúngicos se caracterizan por una doble cadena de ARN que se denomina dsRNA y que no se presenta en los propios hongos. Por tanto, detectar su presencia es un buen indicador de infección vírica. Lo que sigue se lo pueden suponer: el hongo Curvularia, simbionte de Dichantelum, estaba siempre infectado por un virus. Lograron aislarlo y se vió que tomaba la forma de partículas esféricas de unos 27 nm de diámetro.

CThTV, Curvularia Thermal Tolerance Virus

Los siguientes experimentos eran obvios y les comento directamente los resultados: las plantas simbiontes con hongos pero libres de virus no resistieron los ciclos de calor 65 ºC durante 10 horas diarias durante 2 semanas y cayeron tal como lo habían hecho las plantas libres de hongos. Los simbiontes planta-hongo-virus soportaron perfectamente que les cocieran las raíces.

Estamos ante un caso de triple simbiosis donde un virus que infecta un hongo que infecta una planta confiere protección ante el estrés térmico a todos los componentes del grupo siendo todos los simbiontes necesarios. He querido comentarlo para que se vea con claridad que la simbiosis entre organismos hace extraños compañeros y que la riqueza de relaciones entre organismos vivos y no tan vivos nos provee de sorprendentes ejemplos. Por cierto, el mecanismo por el cual todo esto funciona no se ha descubierto aún.
El virus ha sido bautizado como CThTV (Curvularia Thermal Tolerance Virus) y su ficha puede consultarse en esta página de ICTVdB - The Universal Virus Database. Sólo le falta un pase por Gran Hermano para hacerse famoso.

Un par de referencias:
Luis M. Márquez et al., 2006, DOI: 10.1126/science.1136237
Regina S. Redman et al., 2002, DOI: 10.1126/science.1072191
y si quieren ver un caso de virus-bacterias-insectos con protección ante parásitos:
Nancy A. Moran et al., 2005, DOI: 10.1073/pnas.0507029102

13 enero 2007

El extraño caso de la babosa que se movía por energía solar

Hablamos de los líquenes hace una temporada en una breve entrada titulada formas de vida. Tan breve que, aparte de la foto, sólo decía lo siguiente:
Los líquenes no son plantas, son organismos simbióticos donde un alga y un hongo se unen para vivir complementándose mutuamente.
A los líquenes se les asignan nombres específicos como si fueran organismos únicos en vez de comunidades simbióticas donde los papeles se reparten en beneficio mutuo: el alga fotosintetiza para ambos y el hongo la protege de la desecación. Una unión fructífera porque los líquenes aparecen en hábitats realmente extremos. El esquema basado en dos simbiontes es sólo el caso más simple porque a veces las especies implicadas forman tríos: en los líquenes del género Lobaria, al hongo y al alga se les asocia una cianobacteria que añade al grupo la capacidad de fijar el nitrógeno atmosférico. Tampoco son infrecuentes los organismos simbióticos formados por cuatro biontes y hay sospecha razonable de organismos formados por cinco.
Estas “complicaciones” no son raras en la naturaleza, donde el concepto clásico de especie falla más que una escopeta de feria si queremos abarcar a la vida en su conjunto.

Un caso llamativo de estrategia para vivir es el de un grupito de moluscos que ha tomado afición a apropiarse de organismos externos para su propio provecho.
Elysia chlorotica es una especie de babosa marina que se alimenta de un alga llamada Vaucheria litorea. El alga es digerida en su totalidad con una notable excepción: los cloroplastos, orgánulos celulares capaces de realizar la fotosíntesis. Sorprendentemente, los cloroplastos del alga se incorporan a los tejidos del molusco en una forma llamada endosimbiosis intracelular. Los cloroplastos simbióticos son plenamente funcionales y generan nutrientes que son utilizados por la babosa. El resultado es que el molusco puede vivir mediante la fotosíntesis de sus adquiridos cloroplastos durante meses (siempre que haya luz, claro).

Elysia chlorotica en un acuario. Los cloroplastos de dan un intenso color verde y permiten que ejerza una fotosíntesis "prestada" pero funcional.

La endosimbiosis comienza en los moluscos juveniles, que no heredan los cloroplastos y nacen libres de ellos. Aún no se sabe gran cosa sobre como reconocen y seleccionan los cloroplastos del resto de componentes celulares del alga, ni como las células del animal los fagocitan para incorporarlos a su citoplasma.
Lo que sí está claro es que esta simbiosis es algo notable por varios motivos. El más llamativo es que el cloroplasto simbionte no es un organismo completo sino un orgánulo celular semiautónomo. Aunque posee su propio ADN y se divide independientemente de la célula en la que está inmerso, la necesita para el suministro de proteínas que no puede sintetizar por sí mismo. Esto significa que la célula del molusco debe disponer de los mecanismos adecuados para que los cloroplastos no mueran rápidamente: el éxito está claro ya que viven durante bastantes meses en el medio intracelular del molusco y sólo unos días en un medio extracelular. No se conoce con certeza cómo Elysia puede replicar las funciones presentes en el alga y generar las proteínas específicas necesarias para el mantenimiento de los cloroplastos pero hay una hipótesis que a mí me resulta enormemente atractiva: hay evidencia de que existe una transferencia génetica del alga a las células de los animales jóvenes antes de que la simbiosis se establezca. Si esto es así, podria explicarse la síntesis de proteínas necesarias para el cloroplasto porque la trasferencia lateral de genes permite a las células animales satisfacer las necesidades del cloroplasto. Si no es así habrá que buscar explicaciones alternativas para la excepcional pervivencia de estos orgánulos en un medio donde, en principio, no podrían mantener más que unos días.
Hay más ejemplos de esta extraordinaria habilidad. Por ejemplo, una babosa marina pariente de la anterior, Elysia timida también retiene cloroplastos pero de un alga diferente llamada Acetabularia acetabulum. Otra sólo se alimenta y usa cloroplastos de Caulerpa, otra de Halimeda. Todo un despliegue de adaptaciones con una base común y, flotando sobre todo el proceso, esa transferencia genética que hace pocos años sólo se reconocía en bacterias y que, poco a poco, parece no limitarse a ese caso.

Un par de referencias:
Mujer, C.V. et al., 1996, Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. PNAS, 93(22): 12333-12338
Rumpho, M.E. et al., 2000, Solar-Powered Sea Slugs. Mollusc/Algal Chloroplast Symbiosis. Plant Physiology, 123: 29-38.
Grab this Widget ~ Blogger Accessories
 
º