09 octubre 2006

Creo que he visto un lindo pajarito

Una de criptornitología estándar

Science dedicó la portada del número 5727 al Campephilus principalis, un pájaro carpintero que se suponía extinto en Norteamérica desde hace décadas ya que el último avistamiento fiable fue en los EE.UU. en 1940 (noten el adjetivo “fiable”). La portada se debió a que un grupo de ornitólogos dijo haber visto y filmado un ejemplar en los bosques de Arkansas. El Cornell Laboratory of Ornithology mantiene una página web donde puede encontrarse información sobre el bicho en cuestión, entre ellas un video antiguo, de 1935, y el video de 2004 que sirvió de base para la identificación.


Lamentablemente, entre los documentos antiguos y los modernos hay un abismo de calidad y de enfoque: los de los años 30 muestran claramente al pájaro mientras que en el video actual apenas es identificable. Asimismo, las fotos viejas son claras mientras que las nuevas parecen un álbum de viaje donde el piolín no aparece por ningún lado.
Aún así, el artículo comienza con fuerza:
The ivory-billed woodpecker (Campephilus principalis), long suspected to be extinct, has been rediscovered in the Big Woods region of eastern Arkansas. Visual encounters during 2004 and 2005, and analysis of a video clip from April 2004, confirm the existence of at least one male.
El artículo completo está disponible aquí.

Los comentarios críticos no tardaron en aparecer, especialmente porque hay otro pájaro carpintero de nombre Dryocopus pileatus presente en la zona y que potencialmente podría ser confundido con el anterior. La navaja de Occam entró acción y un comentario remitido a la revista unas semanas después comienza también con cierta rotundidad:
We reanalyzed the video presented as confirmation that an ivory-billed woodpecker (Campephilus principalis) persists in Arkansas. None of the features described as diagnostic of the ivory billed woodpecker eliminate a normal pileated woodpecker (Dryocopus pileatus).
A continuación los autores analizan las imágenes, proponen alternativas creíbles e, incluso, dicen que algunos fotogramas están mucho más cercanos al segundo pájaro que al “redescubierto”.
La réplica fue a su vez contestada por los autores que tienen siempre derecho a ello y cuya síntesis fue:
Claims that the bird in the Luneau video is a normal pileated woodpecker are based on misrepresentations of a pileated’s underwing pattern, interpretation of video artifacts as plumage pattern, and inaccurate models of takeoff and flight behavior.
These claims are contradicted by experimental data and fail to explain evidence in the Luneau video of white dorsal plumage, distinctive flight behavior, and a perched woodpecker with white upper parts.
Desde que se publicó esta historia se han comunicado varios posibles avistamientos pero todos ellos sin prueba objetiva alguna, ni una foto, ni una pluma, nada. Y no será porque los oteadores no vayan con cámaras y teleobjetivos ya que el primero que haga una foto nítida a un ejemplar puede contar con una fama notable en un país donde la ornitología es una afición masiva.
Menciono este asunto no porque tenga gran importancia desde el punto de vista biológico sino porque es una de esas cosas que no deberían llegar a una revista como Science sin tener un soporte mayor que el aportado. Y debo reconocer que cuando lo leí me recordó vagamente algunos “documentos” criptozoológicos sembrados de malas fotos o de huellas irreconocibles.¿Se entusiasmaron los editores de Science, revista de EE.UU., con excesiva facilidad?
Y el lado positivo: se ha discutido con argumentos más o menos sólidos (los disponibles) los pros y contras del presunto redescubrimiento, nada de opiniones, ideología ni desafueros.

Nota final: no puedo dejar de recordar que uno de los premios Ig Nobel ha sido por un estudio sobre los dolores de cabeza de los pájaros carpinteros y, en concreto ¿lo adivinan? Del Dryocopus pileatus. Texto completo aquí.

07 octubre 2006

Sólo un caso de oportunismo

Donde una bacteria acepta una invitación irresistible

Vimos en una entrada anterior que el desarrollo en la medicina lleva a situaciones paradójicas porque es precisamente en los hospitales donde surgen las amenazas más graves contra la salud.
La comodidad también ha “creado” enfermedades que no existirían en condiciones de más moderado desarrollo. Una de ellas es interesante porque sirve de ejemplo de que un medio cambiante puede hacer que organismos inicialmente inofensivos acaben por convertirse en algo bastante molesto.
Se trata de la legionelosis. Todo el mundo sabe que esta enfermedad apareció conspicuamente saltó a la fama en 1976 afectando a 221 asistentes a una convención de la American Legion en EE.UU., de los cuales murieron 34. Este fue el origen del nombre no sólo de la enfermedad sino de la bacteria causante: Legionella pneumophilia. Este bautizo supone que antes era una perfecta desconocida aunque análisis posteriores encontraron que había precedentes [actualización, ver comentarios].
En ese periodo de discreción, Legionella vivía en el interior de protozoos, sobre todo amebas, que servían de huésped. Y es que Legionella es una bacteria lábil, que vive en medio acuoso pero muere con cierta rapidez si no infecta un protozoo. La estrategia es que la ameba fagocita la bacteria pero se encuentra con que no es capaz de digerirla. Al contrario, Legionella se reproduce en el interior de la ameba y cuando ésta muere de “indigestión” y se rompe busca otras para continuar el ciclo: el cazador cazado.

Una ameba (en rojo) trincando una Legionella (verde). Imagen tomada de http://www.actglobal.net/legionai.htm

Legionella está presente por todos lados, charcos, ríos, lagos… pero nunca pasó de vivir como un discreto parásito de protozoos. Nunca hasta que nosotros le dimos la oportunidad.
Resulta que la bacteria puede sobrevivir un tiempo fuera de los protozoos (aunque depende de ellos para reproducirse) pero sólo en condiciones de calor, humedad y roña. Y aún así, Legionella debe ser respirada para infectar.

Nuestro progreso económico y nuestras crecientes necesidades espurias mostraron el peligro en toda su crudeza en la convención de legionarios. El motivo, razón y medio de dispersión fue el aire acondicionado. En efecto, Legionella puede prosperar en torres de refrigeración, instalaciones de calefacción y similares. El aire caliente y húmedo se expulsa al exterior en forma de aerosol cuyas minúsculas gotitas son respirables, es decir, penetran hasta el interior de nuestros pulmones sin ser repetenidos al 100% por nuestros “sistemas de filtración” naturales que son la mucosa respiratoria y el sistema ciliar. Legionella llega a los alveolos pulmonares y allí realiza lo único que sabe hacer, dejarse comer. Nosotros no tenemos amebas ahí pero tenemos macrófagos, unas células especializadas en comerse a los invasores. Esa estrategia funciona bien salvo en los casos raros de las bacterias intracelulares.
Legionella aprovecha la ocasión y utiliza los macrófagos como si fueran amebas. El proceso puede avanzar hasta una fase catastrófica, en función del estado de salud inmunitaria del individuo y de lo temprano del tratamiento.

Legionella es un ejemplo del oportunismo de los seres vivos ante cambios ambientales. En España no es un gran problema de salud, aunque ha habido 6980 casos en el periodo 1997-2004 muchos de ellos originados por torres de refrigeración de edificios públicos (incluidos hospitales). Pero también es un ejemplo poco evidente de los riesgos de avanzar en la tecnología como un elefante en una cacharrería.
Casos de legionelosis en España, gráfico elaborado con datos del CNE

05 octubre 2006

Continentes a la deriva y GPS

Donde vamos dando saltos por puentes continentales desde Gondwana hasta los satélites GPS viendo curiosas relaciones

1. Antecedentes

Ya hace unos 100 años había un registro de fósiles que mostraba extrañas pero claras similitudes entre lugares tan distantes como las costas de Namibia y las patagónicas, o entre el sur de Australia y la Antártida.
La explicación que se daba a esta chocante realidad suena ahora tan pintoresca como la historia de la Atlántida: en tiempos lejanos habían existido puentes entre los actuales continentes. Esta hipótesis permitía el libre tránsito entre lugares lejanos de flora y fauna y la similitud paleontológica entre ellos.
La idea parecía buena pero las similitudes eran tantas que el Hemisferio Sur se convirtió en un nudo de autopistas. En la figura inferior podemos ver el esquema utilizado por Alnold Edward Ortmann, un paleontólogo de primeros del siglo pasado, en una de sus obras.


A. E. Ortmann (1902) Tertiary Invertebrates. Reports of the Princeton University Expedition to Patagonia, 1896-1899. Vol. IV. Palaeontology [pulsar encima para ampliar]

El problema es que estos puentes no eran visibles por lo que se hacía necesario proponer que, por motivos desconocidos, se habían hundido en el océano. Y de eso había tanta evidencia como de la Atlántida.
Al meteorológo Alfred Lothar Wegener no le gustaba el panorama y agrupando evidencias paleontológicas y geológicas propuso entre 1912 y 1915 que los continentes se habían movido. Esta hipótesis se convirtió en una teoría bien fundamentada llamada de la deriva continental.


Pero la propuesta era excesivamente rompedora para la época y la carcajada fue general. También hay que comprender que en ese momento se pensaba (no había motivo para pensar otra cosa) que los continentes eran la parte emergida de un sólido que era la Tierra. Un documento en español sobre esta historia puede descargarse aquí y otro aquí.
Actualmente se ha confirmado lo esencial de la teoría de Wegener aunque se sabe que lo que se mueve son placas de corteza terrestre “flotantes” sobre el manto. Su dinámicase conoce como tectónica de placas. Pueden encontrar reconstrucciones de los movimientos en los últimos cientos de millones de años en esta web.

2. La medida de la posición

GPS es el acrónimo de Global Positioning System, un sistema que permite localizar la posición de un receptor de señales en cualquier lugar de la Tierra. La idea es muy simple: si soy capaz de medir la distancia a tres puntos de posición conocida, seré capaz de conocer la mía. Es un método que en topografía se conoce como trilateración. Los puntos son satélites de la “constelación GPS” que emiten señales que incorporan datos de tiempo extremadamente precisos. Las técnicas de localización no sólo se utilizan en la Tierra sino también en los satélites y en los aviones ya que la constelación GPS orbita a más de 20000 km de la Tierra (la mayoría de los satélites de observación terrestre lo hace a apenas 800 km).

3. El sistema de referencia

Cuando miramos la pantalla de un receptor GPS vemos tres datos de posición: latitud, longitud y altura. Pero para dar estos datos es necesario tener un sistema de referencia: decir 40º de latitud Norte supone conocer dónde está el origen de latitudes (el Ecuador), decir 10º de longitud Oeste supone conocer dónde está el origen de longitudes (el meridiano origen).
¿Cómo se hace eso? En principio la respuesta es que el GPS utiliza un sistema de referencia llamado WGS84 (World Geodetic System 1984). WGS84 es una construcción artificial formada por tres ejes de coordenadas y una superficie de revolución llamada elipsoide.


Los tres ejes permite dar una posición en el espacio y el elipsoide se utiliza como superficie de referencia para las alturas. La definición exacta de estos elementos es imprescindible para saber a qué se refieren las coordenadas geográficas o cualesquiera otras que podamos usar. Como era inevitable, han existido docenas de sistemas de referencia diferentes pero el WGS84 está siendo adoptado de forma general aunque sólo sea para poder manejarse en el GPS. Las principales características de este sistema son:
  • los tres ejes cartesianos y el elipsoide son geocéntricos: tienen su origen en el centro de masas de la Tierra (incluyendo mares y atmósfera).
  • el eje Z coincide con el eje de rotación de la Tierra ya que apunta al International Reference Pole.
  • el eje X apunta al meridiano de longitud 0º también conocido como meridiano de Greenwich o
  • el eje Y es ortogonal con los anteriores y con el X define el plano ecuatorial.
¿Y esto qué tiene que ver con Wegener? se preguntarán ustedes. ¿Qué es eso del International Reference Pole y Meridian? Pues resulta que Greenwich y el meridiano que define están sobre una placa continental que se mueve, luego su posición respecto al resto del mundo varía continuamente. También sabemos que el eje de rotación de la Tierra no es fijo sino que oscila en el tiempo, luego este eje cambia y arrastra con él al Polo Norte. Es más, el centro de masas de la Tierra tampoco está en el mismo punto sino que varía según se mueve todo en la superficie. Las consecuencias son las que pueden suponer: los polos, paralelos y meridianos no son estacionarios respecto a ningún país o punto en concreto de la Tierra.

En efecto, debido a la deriva continental, las diferentes partes del mundo se mueven y cambian de posición relativa varios centímetros al año. El Meridiano y el Polo Internacional de Referencia se hacen estacionarios por convenio respecto a la media de dichos movimientos y su posición debe recalcularse y redefinirse de forma continua. Un auténtico rollo para la navegación de precisión.

Deshagamos, por tanto, un mito: las coordenadas de un punto sobre la Tierra no son fijas, cambian continuamente porque la superficie de la Tierra es dinámica, no estática. La deriva continental no sólo hace que dos puntos en dos placas distintas puedan tener movimientos relativos de varios centímetros al año sino que obligan a actualizar los parámetros de los sistemas de referencia de forma continua.
La magnitud del movimiento no es espectacular pero sí importante para muchas aplicaciones: en Inglaterra las latitudes y longitudes WGS84 cambian a una tasa constante de unos 2.5 cm al año en dirección NE. Otras partes del mundo, como Hawai o Australia, se mueven alrededor de 10 cm al año.
Asi que cuando vean ustedes un vértice geodésico acuérdense de que sus coordenadas fueron buenas un día pero que si no se han revisado no van a ser exactas en este momento. Estamos montados y viajando en una lenta pero perseverante placa continental.

04 octubre 2006

Un titular excesivo y una realidad muy discreta

Sobre las publicaciones científicas en España y su situación relativa

Hace un mes don Francisco J. Marcellán, Secretario General de Política Científica y Tecnológica fue entrevistado para Crónica Universia. El titular de dicha entrevista fue
"En España, los resultados de investigación se han incrementado de una manera espectacular"
Mi primera impresión fue que don Francisco exageraba algo. Es obvio que en un país como España la investigación debe ir creciendo, como todo. Lo contrario sólo puede justificarse por guerras o meteoritos inoportunos. Pero me preguntaba yo ¿qué es eso de “espectacular”? ¿Cómo la inflación? No, esa es moderada, dicen. ¿Cómo los precios de los pisos? Bueno, tal vez sí. En ese caso la tendencia en los últimos años en este país ha sido entre un 10 y un 15% anual.

La verdad es que, en este caso, el Secretario General fue mucho más discreto de lo que el titular sugiere (por cierto, que don Francisco sí tiene un curriculum investigador con mayúsculas, no como otros). Sus palabras fueron exactamente las siguientes:
En líneas generales, en los últimos veinte años la participación española a nivel de resultados de investigación se ha incrementado de una manera espectacular.
Por lo visto, el/la periodista no juzgó relevante la cuestión temporal y dejó la interpretación de la cosa a discreción de los lectores. Hay que reconocer que en España han pasado muchas cosas en los últimos 20 y lo que se dice en la declaración es algo lógico, faltaría más. Pero bueno, ya puestos ¿tenemos cifras sobre este asunto? Alguna hay aunque es trabajoso elaborarlas. Yo he calculado un par acudiendo a los datos del ISI y refiriéndome a la Unión Europea. Disculpen que no haya hecho más análisis pero realmente no tengo el tiempo necesario para ello.

No he querido contar las publicaciones así, sin más, porque calidad y cantidad son conceptos distintos. Por eso he recopilado un par de datos no frecuentes: 1) cuántos científicos están en los listados del ISI HighlyCited y 2) cuántas citas por publicación reciben los “papers” de cada país. En ambos indicadores interviene un concepto importante que es el número de citas recibido. En efecto, uno puede publicar mucho pero no ser citado nunca por irrelevante. Pero el que un trabajo sea citado con frecuencia supone una garantía razonable de su importancia en su campo. En la figura de abajo tenemos los resultados para los países de la UE (excepto Luxemburgo); en el caso de los investigadores se ha dividido su número por la población de cada país para hacer comparables las cifras.


Vemos que la situación de España no da para optimismos: estamos en la mitad de la tabla pero claro, de la UE ampliada, donde aparecen los países que estaban antes en la órbita soviética y cuyo PIB es más bien catastrófico. Corrigiendo las citas medias por publicación respecto al PIB nos encontraríamos con la desagradable circunstancia de que España está en el puesto 18 del total de 23 (no he incluido a Luxemburgo).

Pero el que no se consuela es porque no quiere: por otro lado nos enteramos de que España está a la cabeza de la investigación teniendo en cuenta sólo países Iberoamericanos. Yo creo que un titular así es demasiado simple y habría que comparar teniendo en cuenta algún indicador de riqueza de cada país porque creo no es lo mismo investigar teniendo 1000 que teniendo 10.

¿Y qué pasa con el “espectacular” crecimiento que manejaba el periodista? Los datos podemos encontrarlos en la sección de Essential Science Indicators del ya mencionado ISI. Ahí vemos el total de publicaciones y los valores medios de citas por publicación a lo largo del tiempo en los últimos 10 años. Aquí tengo que reconocer que la tendencia es muy buena, tanto en cantidad como en calidad: el incremento interanual medio es del 5.4% en número de publicaciones y del 5.0% en citas por publicación.

¿Cómo mejorar esto? Hay varias medidas que podrían tomarse. La primera es invertir más en I+D ya que según los datos del OECD FactBook 2006, España está a la cola de la inversión en relación al PIB: la media de inversión en el periodo 2000-2003 (últimos datos disponibles) es del 0.97% del PIB, ante una media de la UE15 del 1.90. Aquí destacan Suecia (4.14%), Finlandia (3.42%) y Dinamarca (2.51%). Probablemente en los últimos años la inversión en España haya subido bastante pero no he encontrado datos fiables.
La segunda medida es bastante diferente y consistiría en separar las carreras investigadora y docente en las universidades. No se trataría de una separación al 100% pero sí facilitar que los buenos docentes se centren en sus clases y los buenos investigadores en sus investigaciones. Pero eso no se va a hacer mañana.
Me despido con una figura del informe anterior, donde se muestra el porcentaje del PIB dedicado a investigación y desarrollo en una serie de países.

Gross domestic expenditure on R&D as a percentage of GDP, 2004 or latest available year.
[pulse encima para ampliar]

03 octubre 2006

Formas de vida

No hay muchas opciones ante un ambiente hostil, o resistes más o menos airoso o te escondes discretamente. Una adaptación frecuente a lugares fríos y ventosos es acurrucarse para reducir la superficie expuesta. Esta planta, cuyo nombre desconozco, adopta la forma de almohadilla y florece con discreción, apenas asomando unos centímetros los tallos florales. El resto es duro como una piedra lo que le ha permitido mantenerse muchos años en una pequeña isla en medio del Canal Beagle.

Canal Beagle, Tierra del Fuego, Argentina
[pulse encima para ampliar]

02 octubre 2006

¿Es un pájaro? ¿Es un avión?

¿Qué es eso de las especies? Parte 1: los organismos “fáciles”

A ver: va con mallas azules, vuela con una capa roja y se peina con raya. Está claro: es Supermán. Acabamos de hacer una clasificación. Clasificar un individuo consiste en asignarle a una clase, que debe estar definida por un conjunto de características diagnósticas. Dentro de la clase todos los individuos serán esencialmente iguales, es decir, cumplirán esas características.
Por ejemplo, vemos un piolín por el campo y observamos que mide un par de palmos, que tiene pinta de urraca con la mitad de la cabeza negra y la cola y alas azules. Pues con eso se acabó el problema: es un rabilargo (Cyanopica cyanus). Asumimos que la clase “rabilargo” define individuos que, sin excepciones, poseen las características mencionadas y que ese conjunto de características no se repite en otras clases.
En el problema que nos ocupa, las clases serán las especies (en biología hay una categoría taxonómica que se llama Clase, pero no me refiero a eso). Como he comentado, cada especie debe definirse mediante unas características que permitirán separarla de las demás. Pero antes de eso debemos definir qué es una especie, o dicho de otra forma, que significado tiene la clase “especie”.
La definición clásica (BSD, Biological Species Definition) es la propuesta por Ernst Mayr en el libro Systematics and the Origin of Species publicado en 1942:
groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups”.
Interpretado libérrimamente, un individuo pertenece a una especie si puede reproducirse con los demás individuos de esa especie generando a su vez descendientes que pueden seguir el proceso por ser también fértiles. Y podremos decir que una especie se diferencia de otra especie si los organismos de cada una no pueden fecundarse o, al menos, si los descendientes son estériles.
La definición se apoya en la diferenciación genética: dos individuos que comparten esencialmente el mismo genotipo pertenecen a la misma especie; la similitud genotípica se refleja en la capacidad de fecundación y de tener descendencia. La distancia genotípica hace que la fecundación sea imposible por causas diversas: etológicas o propiamente genéticas (por ejemplo, por tener diferente número de cromosomas).
El ejemplo que comentábamos en las entradas anteriores del perro y del lobo estaría claro: son una misma especie a pesar de que existen diferencias externas ya que la distancia genética entre ambos no es aún suficiente como para evitar la fertilización y los descendientes fértiles. En cambio, los humanos y los chimpancés no somos la misma especie a pesar de que nuestros genotipos son bastante similares: nosotros tenemos 46 cromosomas y nuestros primos 48.
Tenemos por tanto una herramienta para separar especies que, además, tiene sentido evolutivo. Abajo vemos un gráfico que reflejaría el proceso estándar.

Comenzamos con una especie, A, formada por un conjunto de poblaciones (grupos de individuos conectados genéticamente de forma real, no sólo potencial, por vivir en la misma área). En cierto momento, una o más de esas poblaciones se separa genéticamente del grupo principal (normalmente por separación física). La ausencia de intercambio genético hace que esos dos grupos evolucionen independientemente a partir de entonces. La línea horizontal representa el punto de no retorno, cuando esa divergencia evolutiva ya es tan grande que las dos ramas no son interfértiles: ha surgido la especie B.

De este esquema deducimos un par de cosas interesantes.
La primera es que las especies son entidades no permanentes. El catálogo de especies en la Tierra varía según donde pongamos la línea horizontal de la figura. Esa línea representa un corte en un continuo árbol filogenético cuyas ramas varían con el tiempo, algunas surgen, otras desaparecen, incluso la especie A deberá llamarse de forma distinta dentro de un tiempo porque habrá variado sustancialmente respecto a sus ancestros.
La segunda es que la prueba de interfertilidad no puede hacerse en la práctica. La definición de Mayr es más una construcción lógica razonable que una herramienta de diagnóstico. Y como veremos en otra entrada, hay muchos organismos que se resisten a someterse a ella porque la BSD sólo es aplicable a organismos con reproducción sexual y en este mundo hay cosas mucho más raras.

Para facilitarnos la vida, la solución ha sido asumir que las diferencias genotípicas van a tener un reflejo en los caracteres observables del bicho o planta con lo que bastaría con dar unos buenos criterios morfológicos para resolver el problema (eso hemos hecho con Supermán y con el rabilargo). En la realidad, casi siempre se trabaja así con animales y vegetales “superiores”: la morfoespecie se asimila a la especie biológica. En paleontología no cabe otra opción.
El uso de caracteres morfológicos funciona razonablemente bien en muchos casos como, por ejemplo, en vertebrados. Aún así, hay casos que pueden llevar a confusión, como especies polimorfas, diformismo sexual… Pero funciona sólo regular en muchos grupos y no funciona en absoluto en otros que comentaremos en otro momento.

Por tanto, el concepto de especie es ante todo utilitario y adaptado a la escala temporal humana, donde la evolución apenas es perceptible. La definición básica es razonable pero no deberíamos tomarnos al pie de la letra que sea aplicable a todos los organismos porque, de hecho, no lo es. Su mayor problema es que la aplicación de la BSD de Mayr necesita criterios que son mecanismos potenciales o aluden a relaciones no comprobables por lo que, aunque aclara el concepto, lleva el problema práctico a un punto muerto del que sólo puede salirse con soluciones de compromiso donde se sacrifica la coherencia en aras de la utilidad.

Nota: este tema entra plenamente en mi campo de incompetencia, agravado por la necesaria brevedad del post. Hay libros enteros sobre el asunto de la especiación, resumir lo esencial de la cuestión en dos folios es un atrevimiento que espero disculpen y corrijan en los comentarios.
Grab this Widget ~ Blogger Accessories
 
º